analyzer_vis_tester.cc 4.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
T
tensor-tang 已提交
17
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {
namespace inference {
namespace analysis {
22
using contrib::AnalysisConfig;
T
tensor-tang 已提交
23 24 25 26 27 28 29

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line) {
30
  VLOG(30) << "process a line";
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto &d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto &s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
48 49
  VLOG(30) << "data size " << record.data.size();
  VLOG(30) << "data shape size " << record.shape.size();
T
tensor-tang 已提交
50 51 52
  return record;
}

T
Tao Luo 已提交
53
void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
54 55 56 57 58 59
  cfg->param_file = FLAGS_infer_model + "/__params__";
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
T
tensor-tang 已提交
60
  // TODO(TJ): fix fusion gru
61
  cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
T
Tao Luo 已提交
62
}
T
tensor-tang 已提交
63

T
Tao Luo 已提交
64 65
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
T
tensor-tang 已提交
66 67 68 69 70 71 72 73
  std::string line;
  std::ifstream file(FLAGS_infer_data);
  std::getline(file, line);
  auto record = ProcessALine(line);

  PaddleTensor input;
  input.shape = record.shape;
  input.dtype = PaddleDType::FLOAT32;
T
Tao Luo 已提交
74 75 76 77 78 79 80
  size_t input_size = record.data.size() * sizeof(float);
  input.data.Resize(input_size);
  memcpy(input.data.data(), record.data.data(), input_size);
  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}
T
tensor-tang 已提交
81

T
Tao Luo 已提交
82 83
// Easy for profiling independently.
//  ocr, mobilenet and se_resnext50
T
Tao Luo 已提交
84
void profile(bool use_mkldnn = false) {
T
Tao Luo 已提交
85 86
  AnalysisConfig cfg;
  SetConfig(&cfg);
87 88 89
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
90 91 92 93
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
94 95
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
96 97 98 99 100 101 102 103 104 105 106 107

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    const float ocr_result_data[] = {
        5.273636460856323538e-08, 3.296741795111302054e-07,
        1.873261190610264748e-08, 3.403730275408634043e-08,
        3.383312474625199684e-08};
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(outputs[0].data.data());
    for (size_t i = 0; i < std::min(5UL, size); i++) {
      EXPECT_NEAR(result[i], ocr_result_data[i], 1e-3);
T
tensor-tang 已提交
108 109 110 111
    }
  }
}

T
Tao Luo 已提交
112 113 114 115 116 117
TEST(Analyzer_vis, profile) { profile(); }

#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
118 119 120 121 122
// Check the fuse status
TEST(Analyzer_vis, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
123 124
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  GetFuseStatis(predictor.get(), &num_ops);
T
Tao Luo 已提交
125 126 127
}

// Compare result of NativeConfig and AnalysisConfig
T
Tao Luo 已提交
128
void compare(bool use_mkldnn = false) {
T
Tao Luo 已提交
129 130
  AnalysisConfig cfg;
  SetConfig(&cfg);
131 132 133
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
134 135 136

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
137 138
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
Tao Luo 已提交
139 140
}

T
Tao Luo 已提交
141
TEST(Analyzer_vis, compare) { compare(); }
T
Tao Luo 已提交
142
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
143
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
T
Tao Luo 已提交
144
#endif
T
tensor-tang 已提交
145 146 147 148

}  // namespace analysis
}  // namespace inference
}  // namespace paddle