test_orig2prim.py 21.9 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
from paddle.incubate.autograd.primrules import _orig2prim, _prim2orig, _jvp, _transpose

paddle.enable_static()


############################ Test orig2prim rules ############################
class TestElementWiseAddOrig2Prim(unittest.TestCase):
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestOrig2Prim')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'elementwise_add'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_add', 'add_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
57 58 59 60
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
61 62 63 64 65 66 67 68 69 70 71

            prim_out = _orig2prim(op, *self.orig2prim_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]

            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            prim_out = flatten(prim_out)
            for k, v in self.out_map.items():
                self.assertEqual(prim_out[k].shape, v.shape)


class TestSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
72

73 74 75 76
    def init_data(self):
        self.op_type = 'sqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

77 78 79
        self.input = {
            'X': X,
        }
80 81 82 83 84 85 86 87 88 89 90 91 92
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sqrt', 'sqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestElementWiseMulOrig2Prim(TestElementWiseAddOrig2Prim):
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def init_data(self):
        self.op_type = 'elementwise_mul'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_mul', 'mul_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestMatmulV2Orig2Prim(TestElementWiseAddOrig2Prim):
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def init_data(self):
        self.op_type = 'matmul_v2'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')
        Y = paddle.static.data(name='Y', shape=[4, 3], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'trans_x': True, 'trans_y': True}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['matmul_v2', 'transpose_p', 'transpose_p', 'matmul_p']
        self.out_map = {0: self.output['Out']}


class TestTanhOrig2Prim(TestElementWiseAddOrig2Prim):
132

133 134 135 136
    def init_data(self):
        self.op_type = 'tanh'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

137 138 139
        self.input = {
            'X': X,
        }
140 141 142 143 144 145 146 147 148 149 150
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['tanh', 'tanh_p']
        self.out_map = {0: self.output['Out']}


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
class TestSinOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'sin'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sin', 'sin_p']
        self.out_map = {0: self.output['Out']}


class TestCosOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'cos'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['cos', 'cos_p']
        self.out_map = {0: self.output['Out']}


class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'exp'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['exp', 'exp_p']
        self.out_map = {0: self.output['Out']}


211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'erf'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['erf', 'erf_p']
        self.out_map = {0: self.output['Out']}


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
class TestAbsOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'abs'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['abs', 'abs_p']
        self.out_map = {0: self.output['Out']}


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'log'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['log', 'log_p']
        self.out_map = {0: self.output['Out']}


271
class TestReshape2Orig2Prim(TestElementWiseAddOrig2Prim):
272

273 274 275 276
    def init_data(self):
        self.op_type = 'reshape2'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

277 278 279
        self.input = {
            'X': X,
        }
280
        self.output = {
281 282
            'Out':
            X,
283 284 285 286 287 288 289 290
            'XShape':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [6, 5]}

        self.orig2prim_args = (
            None,
            None,
291 292
            X,
        )
293 294 295 296 297 298
        self.all_ops = ['reshape2', 'reshape_p', 'fill_constant_p']
        # Do not checke XShape
        self.out_map = {0: self.output['Out']}


class TestConcatOrig2Prim(TestElementWiseAddOrig2Prim):
299

300 301 302 303 304
    def init_data(self):
        self.op_type = 'concat'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[3, 6], dtype='int64')

305 306 307
        self.input = {
            'X': [X, Y],
        }
308 309 310 311 312 313 314 315
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.orig2prim_args = (
            None,
316 317
            (X, Y),
        )
318 319 320 321 322
        self.all_ops = ['concat', 'concat_p']
        self.out_map = {0: self.output['Out']}


class TestSliceOrig2Prim(TestElementWiseAddOrig2Prim):
323

324 325 326 327
    def init_data(self):
        self.op_type = 'slice'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

328 329 330
        self.input = {
            'Input': X,
        }
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'axes': [0],
            'starts': [1],
            'ends': [4],
        }

        self.orig2prim_args = (None, None, X, None, None)
        self.all_ops = ['slice', 'slice_select_p']
        self.out_map = {0: self.output['Out']}


class TestFillZerosLikeOrig2Prim(TestElementWiseAddOrig2Prim):
347

348 349 350 351
    def init_data(self):
        self.op_type = 'fill_zeros_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

352 353 354
        self.input = {
            'X': X,
        }
355 356 357 358 359 360 361 362 363 364 365 366
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_zeros_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


class TestSumOrig2Prim(TestElementWiseAddOrig2Prim):
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def init_data(self):
        self.op_type = 'sum'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = ((X, Y), )
        self.all_ops = ['sum', 'add_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim1(TestElementWiseAddOrig2Prim):
386

387 388 389 390
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

391 392 393
        self.input = {
            'X': X,
        }
394 395 396 397 398 399 400 401 402 403
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 1,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
404 405 406
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
407 408 409 410
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim2(TestElementWiseAddOrig2Prim):
411

412 413 414 415
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

416 417 418
        self.input = {
            'X': X,
        }
419 420 421 422 423 424 425 426 427 428
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 2,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
429 430 431
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
432 433 434 435
        self.out_map = {0: self.output['Out']}


class TestIndexSelectOrig2Prim(TestElementWiseAddOrig2Prim):
436

437 438 439 440 441 442 443 444 445 446
    def init_data(self):
        self.op_type = 'index_select'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Index = paddle.static.data(name='Index', shape=[2], dtype='int32')

        self.input = {'X': X, 'Index': Index}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
447 448 449
        self.attrs = {
            'dim': 0,
        }
450 451 452

        self.orig2prim_args = (
            Index,
453 454
            X,
        )
455 456 457 458 459
        self.all_ops = ['index_select', 'gather_p']
        self.out_map = {0: self.output['Out']}


class TestElementwiseSubOrig2Prim(TestElementWiseAddOrig2Prim):
460

461 462 463 464 465 466 467 468 469 470
    def init_data(self):
        self.op_type = 'elementwise_sub'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int32')
        Y = paddle.static.data(name='Y', shape=[6], dtype='int32')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
471 472 473
        self.attrs = {
            'dim': 0,
        }
474 475 476

        self.orig2prim_args = (
            X,
477 478
            Y,
        )
479 480 481 482 483
        self.all_ops = ['elementwise_sub', 'broadcast_p', 'sub_p']
        self.out_map = {0: self.output['Out']}


class TestScaleOrig2Prim(TestElementWiseAddOrig2Prim):
484

485 486 487 488
    def init_data(self):
        self.op_type = 'scale'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

489 490 491
        self.input = {
            'X': X,
        }
492 493 494 495 496 497 498 499
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'scale': 2.0, 'bias': 1.0, 'bias_after_scale': True}

        self.orig2prim_args = (
            None,
500 501
            X,
        )
502 503 504 505 506 507 508
        self.all_ops = [
            'scale', 'fill_constant_p', 'fill_constant_p', 'mul_p', 'add_p'
        ]
        self.out_map = {0: self.output['Out']}


class TestAssignOrig2Prim(TestElementWiseAddOrig2Prim):
509

510 511 512 513
    def init_data(self):
        self.op_type = 'assign'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

514 515 516
        self.input = {
            'X': X,
        }
517 518 519 520 521 522 523 524 525 526 527
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['assign', 'fill_constant_p', 'add_p']
        self.out_map = {0: self.output['Out']}


528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
class TestWhereOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'where'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.orig2prim_args = (Cond, X, Y)
        self.all_ops = ['where', 'select_p']
        self.out_map = {0: self.output['Out']}


class TestEqualOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['equal', 'eq_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
class TestNeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'not_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['not_equal', 'ne_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGtOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_than'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_than', 'gt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_equal', 'ge_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
class TestPowOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_pow', 'pow_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_max'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_max', 'max_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'gelu', 'add_p', 'erf_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'mul_p', 'mul_p', 'mul_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': True}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'add_p', 'add_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'gelu',
            'mul_p', 'mul_p', 'mul_p', 'mul_p', 'pow_p', 'tanh_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
class TestReduceSumOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_sum'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = ['reduce_sum', 'reduce_sum_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestReduceMeanOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_mean'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'reduce_mean', 'reduce_sum_p', 'fill_constant_p', 'div_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


748 749
if __name__ == '__main__':
    unittest.main()