cache.h 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17 18
#include <algorithm>
#include <mutex>
19
#include <numeric>
20 21
#include <unordered_map>
#include <vector>
22

23 24 25 26
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"

H
hong 已提交
27 28
DECLARE_int32(search_cache_max_number);

29 30 31 32 33 34 35 36
inline void HashCombine(std::size_t* seed) {}

// combine hash value
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
template <typename T, typename... Rest>
inline void HashCombine(std::size_t* seed, const T& v, Rest... rest) {
  std::hash<T> hasher;
  *seed ^= hasher(v) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2);
H
hong 已提交
37
  *seed *= 0x00000100000001B3;
38 39 40 41 42 43 44 45 46
  HashCombine(seed, rest...);
}

// custom specialization of std::hash can be injected in namespace std
// ref: https://en.cppreference.com/w/cpp/utility/hash
namespace std {
template <typename T>
struct hash<std::vector<T>> {
  std::size_t operator()(std::vector<T> const& vec) const noexcept {
H
hong 已提交
47
    std::size_t seed = 0xcbf29ce484222325;
48 49 50 51 52 53 54 55 56 57 58
    for (auto val : vec) {
      HashCombine(&seed, val);
    }
    return seed;
  }
};
}  // namespace std

namespace phi {
namespace autotune {

H
hong 已提交
59 60 61 62 63 64 65 66
struct DnnNode {
  DnnNode() {}
  explicit DnnNode(int64_t a, size_t size) : algo(a), workspace_size(size) {}

  int64_t algo;
  size_t workspace_size = 0;
};

67 68 69 70 71 72 73
template <typename... Args>
size_t GetKey(Args&&... args) {
  size_t seed = 0;
  HashCombine(&seed, std::forward<Args>(args)...);
  return seed;
}

H
hong 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
struct ConvCacheKey {
  ConvCacheKey() {}
  explicit ConvCacheKey(const std::vector<int64_t>& x_dims,
                        const std::vector<int64_t>& w_dims,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        phi::DataType dtype,
                        int groups,
                        int64_t data_layout)
      : x_dims_(x_dims),
        w_dims_(w_dims),
        strides_(strides),
        paddings_(paddings),
        dilations_(dilations),
        dtype_(dtype),
        groups_(groups),
        data_layout_(data_layout) {}
  size_t hash_value() const {
    return GetKey(x_dims_,
                  w_dims_,
                  strides_,
                  paddings_,
                  dilations_,
                  static_cast<int64_t>(dtype_),
                  groups_,
                  data_layout_);
  }
  std::vector<int64_t> x_dims_;
  std::vector<int64_t> w_dims_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::vector<int> dilations_;
  phi::DataType dtype_;
  int groups_;
  int64_t data_layout_;
};

struct ConvCacheKeyHash {
  size_t operator()(const ConvCacheKey& cache) const {
    return cache.hash_value();
  }
};

struct ConvCacheKeyEqual {
  size_t operator()(const ConvCacheKey& first,
                    const ConvCacheKey& second) const {
    if (first.x_dims_ != second.x_dims_) return false;
    if (first.w_dims_ != second.w_dims_) return false;
    if (first.strides_ != second.strides_) return false;
    if (first.paddings_ != second.paddings_) return false;
    if (first.dilations_ != second.dilations_) return false;
    if (first.dtype_ != second.dtype_) return false;
    if (first.groups_ != second.groups_) return false;
    if (first.data_layout_ != second.data_layout_) return false;

    return true;
  }
};

class CudnnAlgorithmsCacheMap {
 public:
  CudnnAlgorithmsCacheMap() : cache_mutex_(new std::mutex()) { hash_.clear(); }

  DnnNode Get(const ConvCacheKey& key) {
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    PADDLE_ENFORCE_NE(
        hash_.find(key),
        hash_.end(),
        phi::errors::PreconditionNotMet("The key does not exist."));
    return hash_[key];
  }

  bool Find(const ConvCacheKey& key) {
    bool ret = false;
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    if (hash_.find(key) != hash_.end()) {
      cache_hits_++;
      ret = true;
    } else {
      cache_misses_++;
    }
    return ret;
  }

  void Clean() {
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    hash_.clear();
    cache_hits_ = 0;
    cache_misses_ = 0;
  }

  void Set(const ConvCacheKey& key, DnnNode algo) {
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    if (hash_.size() > static_cast<size_t>(FLAGS_search_cache_max_number)) {
      hash_.clear();
    }
    hash_[key] = algo;
  }

  int64_t CacheMisses() const { return cache_misses_; }

  int64_t CacheHits() const { return cache_hits_; }

  float CacheHitRate() const {
    int64_t num_accesses = cache_hits_ + cache_misses_;
    float cache_hit_rate = 0.;
    if (num_accesses != 0) {
      cache_hit_rate =
          static_cast<float>(cache_hits_) / static_cast<float>(num_accesses);
    }
    return cache_hit_rate;
  }

  int64_t Size() const { return hash_.size(); }

 private:
  std::unordered_map<ConvCacheKey, DnnNode, ConvCacheKeyHash, ConvCacheKeyEqual>
      hash_;
  std::shared_ptr<std::mutex> cache_mutex_;

  int64_t cache_hits_{0};
  int64_t cache_misses_{0};
};
198

199 200 201 202
size_t TransposeKey(const std::vector<int64_t>& x_dims,
                    const std::vector<int32_t>& perm,
                    phi::DataType dtype);

203 204 205
template <typename AlgorithmT>
class AlgorithmsCache {
 public:
206
  AlgorithmsCache() : cache_mutex_(new std::mutex()) { hash_.clear(); }
207

H
hong 已提交
208
  AlgorithmT Get(const size_t& key) {
209
    std::lock_guard<std::mutex> lock(*cache_mutex_);
210 211 212 213 214 215 216
    PADDLE_ENFORCE_NE(
        hash_.find(key),
        hash_.end(),
        phi::errors::PreconditionNotMet("The key does not exist."));
    return hash_[key];
  }

H
hong 已提交
217
  bool Find(const size_t& key) {
218
    bool ret = false;
219
    std::lock_guard<std::mutex> lock(*cache_mutex_);
220 221 222 223 224 225 226 227 228
    if (hash_.find(key) != hash_.end()) {
      cache_hits_++;
      ret = true;
    } else {
      cache_misses_++;
    }
    return ret;
  }

229 230 231 232 233 234 235
  void Clean() {
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    hash_.clear();
    cache_hits_ = 0;
    cache_misses_ = 0;
  }

H
hong 已提交
236
  void Set(const size_t& key, AlgorithmT algo) {
237
    std::lock_guard<std::mutex> lock(*cache_mutex_);
238 239 240
    hash_[key] = algo;
  }

241 242 243 244
  int64_t CacheMisses() const { return cache_misses_; }

  int64_t CacheHits() const { return cache_hits_; }

245 246
  float CacheHitRate() const {
    int64_t num_accesses = cache_hits_ + cache_misses_;
247 248 249 250 251
    float cache_hit_rate = 0.;
    if (num_accesses != 0) {
      cache_hit_rate =
          static_cast<float>(cache_hits_) / static_cast<float>(num_accesses);
    }
252 253 254
    return cache_hit_rate;
  }

255
  int64_t Size() const { return hash_.size(); }
256 257 258

 private:
  std::unordered_map<size_t, AlgorithmT> hash_;
259
  std::shared_ptr<std::mutex> cache_mutex_;
260 261 262 263 264 265 266 267 268

  int64_t cache_hits_{0};
  int64_t cache_misses_{0};
};

enum class AlgorithmType {
  kConvForward = 1,
  kConvBackwardData = 2,
  kConvBackwardFilter = 3,
269 270
  kTranspose = 4,
  kAlgorithmCount = 5
271 272
};

273
// AlgorithmsConfigKey -> AlgorithmsID
H
hong 已提交
274
// (todo. hong) use cudnnConvolutionFwdAlgo_t
275 276 277
using AlgorithmsCacheMap = AlgorithmsCache<int64_t>;
// AlgorithmType -> AlgorithmsCache
using AlgorithmsTypeMap = std::unordered_map<int64_t, AlgorithmsCacheMap>;
H
hong 已提交
278 279
using CudnnAlgorithmsTypeMap =
    std::unordered_map<int64_t, CudnnAlgorithmsCacheMap>;
280 281 282 283 284 285 286 287

class AutoTuneCache {
 public:
  static AutoTuneCache& Instance() {
    static AutoTuneCache autotune_cache;
    return autotune_cache;
  }

288 289
  AlgorithmsCacheMap& Get(const AlgorithmType& algo_type) {
    return auto_tune_map_[static_cast<int64_t>(algo_type)];
290 291
  }

H
hong 已提交
292 293 294
  CudnnAlgorithmsCacheMap& GetConvForward() {
    return cudnn_auto_tune_map_[static_cast<int64_t>(
        AlgorithmType::kConvForward)];
295 296
  }

H
hong 已提交
297 298 299
  CudnnAlgorithmsCacheMap& GetConvBackwardData() {
    return cudnn_auto_tune_map_[static_cast<int64_t>(
        AlgorithmType::kConvBackwardData)];
300 301
  }

H
hong 已提交
302 303 304
  CudnnAlgorithmsCacheMap& GetConvBackwardFilter() {
    return cudnn_auto_tune_map_[static_cast<int64_t>(
        AlgorithmType::kConvBackwardFilter)];
305 306
  }

307 308
  AlgorithmsCacheMap& GetTranspose() { return Get(AlgorithmType::kTranspose); }

309
  void Clean() {
310
    for (auto& v : auto_tune_map_) {
311
      v.second.Clean();
312
    }
H
hong 已提交
313 314 315 316

    for (auto& v : cudnn_auto_tune_map_) {
      v.second.Clean();
    }
317 318
  }

319 320
  void UpdateStatus();

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  // The number of total config cached
  int64_t Size() const { return total_size_; }

  int64_t CacheHits() const { return total_cache_hits_; }

  int64_t CacheMisses() const { return total_cache_misses_; }

  float CacheHitRate() const {
    float total_cache_hit_rate = 0.;
    int64_t total_num_accesses = total_cache_hits_ + total_cache_misses_;
    if (total_num_accesses != 0) {
      total_cache_hit_rate = static_cast<float>(total_cache_hits_) /
                             static_cast<float>(total_num_accesses);
    }
    return total_cache_hit_rate;
336 337 338
  }

 private:
339 340 341 342 343 344 345 346
  AutoTuneCache() : autotune_cache_mutex_(new std::mutex()) {
    for (int i = 1; i < static_cast<int>(AlgorithmType::kAlgorithmCount); ++i) {
      Register(static_cast<AlgorithmType>(i));
    }
  }

  void Register(const AlgorithmType& algo_type) {
    std::lock_guard<std::mutex> lock(*autotune_cache_mutex_);
H
hong 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360
    if (algo_type == AlgorithmType::kConvForward ||
        algo_type == AlgorithmType::kConvBackwardData ||
        algo_type == AlgorithmType::kConvBackwardFilter) {
      int64_t key = static_cast<int64_t>(algo_type);
      if (auto_tune_map_.find(key) == auto_tune_map_.end()) {
        CudnnAlgorithmsCacheMap cache;
        cudnn_auto_tune_map_[key] = cache;
      }
    } else {
      int64_t key = static_cast<int64_t>(algo_type);
      if (auto_tune_map_.find(key) == auto_tune_map_.end()) {
        AlgorithmsCacheMap cache;
        auto_tune_map_[key] = cache;
      }
361 362 363
    }
  }

364
  AlgorithmsTypeMap auto_tune_map_;
H
hong 已提交
365
  CudnnAlgorithmsTypeMap cudnn_auto_tune_map_;
366
  std::shared_ptr<std::mutex> autotune_cache_mutex_;
367 368 369
  int64_t total_cache_hits_{0};
  int64_t total_cache_misses_{0};
  int64_t total_size_{0};
370 371
};

372 373
}  // namespace autotune
}  // namespace phi