transpose_op.cu 4.7 KB
Newer Older
X
xzl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

template <typename T>
__global__ void transpose_kernel(int nthreads, const T* in_data, T* out_data,
                                 int* offset_buffer, int ndims) {
  int* in_offset = offset_buffer;
  int* out_offset = offset_buffer + ndims;
X
xzl 已提交
27
  int* axis = offset_buffer + ndims * 2;
X
xzl 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

  int to_index = blockIdx.x * blockDim.x + threadIdx.x;

  if (to_index < nthreads) {
    int from_index = 0;
    int temp = to_index;
    for (size_t i = 0; i < ndims; i++) {
      from_index += (temp / out_offset[i]) * in_offset[axis[i]];
      temp = temp % out_offset[i];
    }
    out_data[to_index] = in_data[from_index];
  }
}

template <typename T>
void TransposeCUDA(const framework::ExecutionContext& context,
                   const framework::Tensor& in, framework::Tensor& out,
                   std::vector<int> axis) {
  auto* in_data = in.template data<T>();
  auto* out_data = out.template mutable_data<T>(context.GetPlace());
  auto in_dim = in.dims();
  auto out_dim = out.dims();
  auto data_size = product(in_dim);
  size_t ndims = in_dim.size();
  std::vector<int> in_offset(ndims, 1);
  std::vector<int> out_offset(ndims, 1);

X
xzl 已提交
55 56 57 58 59
  auto cpu_place = platform::CPUPlace();
  auto gpu_place = boost::get<platform::GPUPlace>(context.GetPlace());

  // Get a host_buffer to cache the input offset, output offset and the axis.
  std::vector<int64_t> buffer_dim_shape(1, ndims * 3);
X
xzl 已提交
60 61 62 63 64 65 66 67
  auto buffer_dims = framework::make_ddim(buffer_dim_shape);
  framework::Tensor host_buffer;
  int* host_buffer_data = host_buffer.mutable_data<int>(buffer_dims, cpu_place);

  for (int i = ndims - 2; i >= 0; i--) {
    in_offset[i] = in_offset[i + 1] * in_dim[i + 1];
    out_offset[i] = out_offset[i + 1] * out_dim[i + 1];
  }
X
xzl 已提交
68
  // copy the data to the host_buffer
X
xzl 已提交
69 70 71 72 73 74
  for (int i = 0; i < ndims; i++) {
    host_buffer_data[i] = in_offset[i];
    host_buffer_data[i + ndims] = out_offset[i];
    host_buffer_data[i + ndims * 2] = axis[i];
  }

X
xzl 已提交
75 76 77 78 79 80 81
  // Get a device_buffer to cache the input offset, output offset and the axis.
  auto offset_buffer = memory::Alloc(gpu_place, ndims * 3 * sizeof(int));

  auto* cuda_device_context = reinterpret_cast<platform::CUDADeviceContext*>(
      const_cast<platform::DeviceContext*>(context.device_context_));

  // copy the host_buffer data to the device_buffer
X
xzl 已提交
82
  memory::Copy(gpu_place, offset_buffer, cpu_place, host_buffer_data,
X
xzl 已提交
83 84
               ndims * 3 * sizeof(int), cuda_device_context->stream());

X
xzl 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  int block = 512;
  int grid = (data_size + block - 1) / block;
  transpose_kernel<T><<<grid, block>>>(data_size, in_data, out_data,
                                       static_cast<int*>(offset_buffer), ndims);
  memory::Free(gpu_place, offset_buffer);
}

template <typename T>
class TransposeCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "It must use GPUPlace.");
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
X
xzl 已提交
100
    auto axis = context.Attr<std::vector<int>>("axis");
X
xzl 已提交
101 102 103 104 105 106 107 108 109 110 111 112
    TransposeCUDA<T>(context, *in, *out, axis);
  }
};

template <typename T>
class TransposeGradCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "It must use GPUPlace.");
    auto* in = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out = context.Output<framework::Tensor>(framework::GradVarName("X"));
X
xzl 已提交
113
    auto axis_temp = context.Attr<std::vector<int>>("axis");
X
xzl 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    std::vector<int> axis(axis_temp);

    for (size_t i = 0; i < axis.size(); i++) {
      axis[axis_temp[i]] = i;
    }
    TransposeCUDA<T>(context, *in, *out, axis);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(transpose, ops::TransposeCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(transpose_grad, ops::TransposeGradCUDAKernel<float>);