BlockExpandLayer.cpp 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BlockExpandLayer.h"

#include "paddle/utils/Logging.h"

namespace paddle {

REGISTER_LAYER(blockexpand, BlockExpandLayer);

bool BlockExpandLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(config_.inputs_size(), 1);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  blockH_ = blockConf.block_y();
  blockW_ = blockConf.block_x();
  strideH_ = blockConf.stride_y();
  strideW_ = blockConf.stride_x();
  paddingH_ = blockConf.padding_y();
  paddingW_ = blockConf.padding_x();
  channels_ = blockConf.channels();
  imgSizeH_ = blockConf.img_size_y();
  imgSizeW_ = blockConf.img_size_x();

40 41 42 43 44 45 46 47 48 49 50 51
  if (!useGpu_) {
    std::vector<size_t> strides = {(size_t)strideH_, (size_t)strideW_};
    std::vector<size_t> paddings = {(size_t)paddingH_, (size_t)paddingW_};
    std::vector<size_t> blocks = {(size_t)blockH_, (size_t)blockW_};
    createFunction(forward_,
                   "ImageExpand",
                   FuncConfig()
                       .set("strides", strides)
                       .set("paddings", paddings)
                       .set("blocks", blocks));
  }

Z
zhangjinchao01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
  return true;
}

size_t BlockExpandLayer::getBlockNum() {
  CHECK_EQ(inputLayers_.size(), 1UL);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imgSizeH_ == 0) {
    imgSizeH_ = blockConf.img_size_y();
  }
  if (imgSizeW_ == 0) {
    imgSizeW_ = blockConf.img_size_x();
  }
66
  size_t tmpH = 2 * paddingH_ + imgSizeH_ - blockH_;
Z
zhangjinchao01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80
  outputH_ = (int)tmpH < 0 ? 1 : 1 + (tmpH + strideH_ - 1) / strideH_;
  size_t tmpW = 2 * paddingW_ + imgSizeW_ - blockW_;
  outputW_ = (int)tmpW < 0 ? 1 : 1 + (tmpW + strideW_ - 1) / strideW_;

  return outputH_ * outputW_;
}

void BlockExpandLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  size_t blockNum = getBlockNum();
  size_t blockSize = blockH_ * blockW_ * channels_;
  resetOutput(blockNum * batchSize, blockSize);
81 82
  // TODO(hedaoyuan): After completing the GPU version of ImageExpand,
  // refactor the following code.
Z
zhangjinchao01 已提交
83 84 85 86 87
  Argument& out = getOutput();
  MatrixPtr outV = getOutputValue();

  MatrixPtr input = getPrev(0)->getOutputValue();
  Matrix::resizeOrCreate(outVTrans_, blockSize, blockNum, false, useGpu_);
88 89
  ICpuGpuVector::resizeOrCreate(
      out.sequenceStartPositions, batchSize + 1, false);
Z
zhangjinchao01 已提交
90 91 92 93
  IVector::resizeOrCreate(out.cpuSequenceDims, 2 * batchSize, false);
  int* start = out.sequenceStartPositions->getMutableData(false);
  int* dims = out.cpuSequenceDims->getData();
  for (size_t i = 0; i < batchSize; i++) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if (useGpu_) {
      outVTrans_->zeroMem();
      /* expand each block as one row */
      MatrixPtr inputTmp =
          Matrix::create(input->getData() + i * input->getWidth(),
                         1,
                         input->getWidth(),
                         false,
                         useGpu_);
      outVTrans_->convExpand(*inputTmp,
                             imgSizeH_,
                             imgSizeW_,
                             channels_,
                             blockH_,
                             blockW_,
                             strideH_,
                             strideW_,
                             paddingH_,
                             paddingW_,
                             outputH_,
                             outputW_);
      MatrixPtr outVTmp =
          Matrix::create(outV->getData() + i * blockNum * blockSize,
                         blockNum,
                         blockSize,
                         false,
                         useGpu_);
      outVTrans_->transpose(outVTmp, false);
    }
Z
zhangjinchao01 已提交
123 124 125 126 127
    start[i] = i * blockNum;
    dims[2 * i] = outputH_;
    dims[2 * i + 1] = outputW_;
  }
  start[batchSize] = batchSize * blockNum;
128 129 130 131 132 133 134 135 136
  if (!useGpu_) {
    TensorShape inputShape({batchSize, channels_, imgSizeH_, imgSizeW_});
    TensorShape outputShape({batchSize, blockNum, blockSize});
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(0), inputShape);
    outputs.addArg(*getOutputValue(), outputShape, ASSIGN_TO);
    forward_[0]->calc(inputs, outputs);
  }
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
}

void BlockExpandLayer::backward(const UpdateCallback& callback) {
  size_t blockNum = outputH_ * outputW_;
  size_t blockSize = blockH_ * blockW_ * channels_;
  /* Calculate the input layers error */
  MatrixPtr preGrad = inputLayers_[0]->getOutputGrad();
  if (!preGrad) {
    return;
  }
  MatrixPtr grad = getOutputGrad();
  MatrixPtr gradTrans = Matrix::create(blockSize, blockNum, false, useGpu_);
  size_t batchSize = preGrad->getHeight();

  CHECK_EQ(batchSize * blockNum, grad->getHeight());
  CHECK_EQ(blockSize, grad->getWidth());

  for (size_t i = 0; i < batchSize; i++) {
    MatrixPtr gradTmp =
156 157 158 159 160
        Matrix::create(grad->getData() + i * blockNum * blockSize,
                       blockNum,
                       blockSize,
                       false,
                       useGpu_);
Z
zhangjinchao01 已提交
161 162
    gradTmp->transpose(gradTrans, false);
    MatrixPtr preGradTmp =
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        Matrix::create(preGrad->getData() + i * preGrad->getWidth(),
                       1,
                       preGrad->getWidth(),
                       false,
                       useGpu_);
    preGradTmp->convShrink(*gradTrans,
                           imgSizeH_,
                           imgSizeW_,
                           channels_,
                           blockH_,
                           blockW_,
                           strideH_,
                           strideW_,
                           paddingH_,
                           paddingW_,
                           outputH_,
                           outputW_,
                           1.0,
                           1.0);
Z
zhangjinchao01 已提交
182 183 184 185
  }
}

}  // namespace paddle