adam_op.h 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
22 23 24 25

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
26 27
namespace scatter = paddle::operators::math::scatter;

28 29 30 31 32 33
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
34
template <typename T>
35
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
49
  T* param_out_;
Y
Yang Yu 已提交
50 51 52

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
53 54
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
55 56 57 58 59 60 61 62 63 64 65
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
66 67
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
68

Y
Yang Yu 已提交
69
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
70 71 72 73 74 75 76
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
77
    T p = param_[i];
Y
Yang Yu 已提交
78 79

    // Calculation
Y
Yang Yu 已提交
80
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
81

Y
Yang Yu 已提交
82 83
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
84
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
85 86 87 88

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
89
    param_out_[i] = p;
Y
Yang Yu 已提交
90 91 92
  }
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

T
wip  
typhoonzero 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
template <typename T>
struct SparseAdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
177
  int64_t row_count_;
T
wip  
typhoonzero 已提交
178 179 180 181 182

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
S
sneaxiy 已提交
183
                    int64_t row_numel, int64_t row_count)
T
wip  
typhoonzero 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        row_numel_(row_numel),
        row_count_(row_count) {}

  inline HOSTDEVICE int64_t BinarySearchInRows(int64_t row) const {
    int64_t beg = 0, end = row_count_ - 1;
    while (beg <= end) {
      auto mid = ((beg + end) >> 1);
      if (rows_[mid] == row)
        return mid;
      else if (rows_[mid] < row)
        beg = mid + 1;
      else
        end = mid - 1;
    }
    return -1;
  }
T
wip  
typhoonzero 已提交
214 215

  inline HOSTDEVICE void operator()(size_t i) const {
S
sneaxiy 已提交
216 217 218 219 220 221 222 223
    int64_t row = i / row_numel_;
    auto row_idx = BinarySearchInRows(row);
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;

    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
224 225
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
239 240 241
  }
};

Q
QI JUN 已提交
242
template <typename DeviceContext, typename T>
243 244 245
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yang Yu 已提交
246 247
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
248

249 250 251
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
252
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
253 254
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
272 273
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
302 303 304
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
305 306 307 308
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }
T
wip  
typhoonzero 已提交
309
      // merge duplicated rows if any.
S
sneaxiy 已提交
310
      // The rows of grad_merge have been sorted inside MergeAdd functor
T
wip  
typhoonzero 已提交
311
      scatter::MergeAdd<DeviceContext, T> merge_func;
S
sneaxiy 已提交
312 313 314 315 316 317
      auto& grad_merge = *(ctx.scope()
                               .NewScope()
                               .Var("sparse_adam_grad_merge")
                               ->GetMutable<framework::SelectedRows>());
      merge_func(ctx.template device_context<DeviceContext>(), grad,
                 &grad_merge);
T
wip  
typhoonzero 已提交
318
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
319
      const T* grad_data = grad_tensor.template data<T>();
D
dzhwinter 已提交
320
      int64_t* rows = nullptr;
321 322 323
// When compiled without CUDA, the CUDAMutableData() interface should not be
// provided.
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
324
      if (platform::is_gpu_place(ctx.GetPlace())) {
Y
Yu Yang 已提交
325
        rows = grad_merge.mutable_rows()->CUDAMutableData(ctx.GetPlace());
D
dzhwinter 已提交
326
      } else {
327
#endif
D
dzhwinter 已提交
328
        rows = grad_merge.mutable_rows()->data();
329 330

#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
331
      }
332
#endif
T
wip  
typhoonzero 已提交
333
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
334 335 336 337 338 339 340 341

      SparseAdamFunctor<T> functor(
          beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          lr.template data<T>(), grad_data, param.template data<T>(),
S
sneaxiy 已提交
342 343
          param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
          grad_merge.rows().size());
T
wip  
typhoonzero 已提交
344 345
      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
S
sneaxiy 已提交
346
          param.numel());
T
wip  
typhoonzero 已提交
347 348 349 350
      for_range(functor);
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
351 352 353 354 355
  }
};

}  // namespace operators
}  // namespace paddle