broadcast_op_handle.cc 5.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

C
chengduoZH 已提交
15
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
C
chengduoZH 已提交
18 19 20 21 22

namespace paddle {
namespace framework {
namespace details {

C
chengduoZH 已提交
23
void BroadcastOpHandle::RunImpl() {
C
chengduoZH 已提交
24
  if (places_.size() == 1) return;
C
chengduoZH 已提交
25
  // the input and output may have dummy var.
Y
Yu Yang 已提交
26 27 28 29 30 31 32 33 34 35
  VarHandle *in_var_handle;

  {
    auto in_var_handles = DynamicCast<VarHandle>(inputs_);
    PADDLE_ENFORCE_EQ(in_var_handles.size(), 1,
                      "The number of input should be one.");
    in_var_handle = in_var_handles[0];
  }

  auto out_var_handles = DynamicCast<VarHandle>(outputs_);
C
chengduoZH 已提交
36

C
chengduoZH 已提交
37
  PADDLE_ENFORCE_EQ(
38
      out_var_handles.size(), places_.size(),
C
chengduoZH 已提交
39
      "The number of output should equal to the number of places.");
C
chengduoZH 已提交
40

Y
Yu Yang 已提交
41
  // Wait input done, this Wait is asynchronous operation platform::Place
C
chengduoZH 已提交
42
  // &in_place;
Y
Yu Yang 已提交
43
  WaitInputVarGenerated(*in_var_handle);
C
chengduoZH 已提交
44

C
chengduoZH 已提交
45 46 47 48 49 50 51
  std::vector<const Scope *> var_scopes;
  for (auto *s : local_scopes_) {
    var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>());
  }

  auto *in_var =
      var_scopes.at(in_var_handle->scope_idx_)->FindVar(in_var_handle->name_);
Y
Yu Yang 已提交
52
  PADDLE_ENFORCE_NOT_NULL(in_var);
C
chengduoZH 已提交
53

Y
Yu Yang 已提交
54
  Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var);
C
chengduoZH 已提交
55

C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  if (platform::is_cpu_place(in_tensor.place())) {
    for (auto *out : out_var_handles) {
      if (*out == *in_var_handle) {
        continue;
      }

      auto &out_p = out->place_;
      auto *out_var = var_scopes.at(out->scope_idx_)->FindVar(out->name_);
      PADDLE_ENFORCE_NOT_NULL(out_var);
      PADDLE_ENFORCE_EQ(out_p.which(), in_tensor.place().which(),
                        "Places must be all on CPU or all on CUDA.");

      VariableVisitor::ShareDimsAndLoD(*in_var, out_var);
      VariableVisitor::GetMutableTensor(out_var).mutable_data(out_p,
                                                              in_tensor.type());

      auto dev_ctx = dev_ctxes_.at(out_p);
      RunAndRecordEvent(out_p, [in_tensor, out_var, dev_ctx, out_p] {
        paddle::framework::TensorCopy(
            in_tensor, out_p, *dev_ctx,
            &VariableVisitor::GetMutableTensor(out_var));
      });
    }
  } else {
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE(platform::is_gpu_place(in_tensor.place()));
    VarHandle *out_handle;
    int root = boost::get<platform::CUDAPlace>(in_tensor.place()).device;
    std::vector<std::function<void()>> broadcast_calls;

    for (size_t j = 0; j < out_var_handles.size(); ++j) {
      VarHandle *out_var_handle = out_var_handles[j];
      Variable *out_var = var_scopes.at(out_var_handle->scope_idx_)
                              ->FindVar(out_var_handle->name_);

      if (*out_var_handle != *in_var_handle) {
        PADDLE_ENFORCE_NOT_NULL(out_var);
        PADDLE_ENFORCE_EQ(out_var_handle->place_.which(),
                          in_tensor.place().which(),
                          "Places must be all on CPU or all on CUDA.");
        VariableVisitor::ShareDimsAndLoD(*in_var, out_var);
        VariableVisitor::GetMutableTensor(out_var).mutable_data(
            out_var_handle->place_, in_tensor.type());
      }

      auto out_p = out_var_handle->place_;
      int dev_id = boost::get<platform::CUDAPlace>(out_p).device;

      auto &nccl_ctx = nccl_ctxs_->at(dev_id);
      auto stream = nccl_ctx.stream();
      auto comm = nccl_ctx.comm_;

      void *send_recv_buffer = nullptr;
      if (root == dev_id) {
        send_recv_buffer = const_cast<void *>(in_tensor.data<void>());
        out_handle = out_var_handle;
      } else {
        send_recv_buffer =
            VariableVisitor::GetMutableTensor(out_var).mutable_data(
                out_var_handle->place_);
      }

      int type = platform::ToNCCLDataType(in_tensor.type());
      broadcast_calls.emplace_back([=] {
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            send_recv_buffer, in_tensor.numel(),
            static_cast<ncclDataType_t>(type), root, comm, stream));
      });
Y
Yu Yang 已提交
124 125
    }

C
chengduoZH 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    this->RunAndRecordEvent([&] {
      {
        platform::NCCLGroupGuard guard;
        for (auto &call : broadcast_calls) {
          call();
        }
      }
      if (*out_handle != *in_var_handle) {
        auto out_var = var_scopes.at(in_var_handle->scope_idx_)
                           ->FindVar(out_var_handles[0]->name_);
        paddle::framework::TensorCopy(
            in_tensor, in_var_handle->place_,
            *(dev_ctxes_.at(in_var_handle->place_)),
            &VariableVisitor::GetMutableTensor(out_var));
      }
C
chengduoZH 已提交
141
    });
C
chengduoZH 已提交
142 143 144
#else
    PADDLE_THROW("CUDA is not support.");
#endif
C
chengduoZH 已提交
145 146 147
  }
}

Y
Yu Yang 已提交
148
void BroadcastOpHandle::WaitInputVarGenerated(const VarHandle &in_var) {
149 150 151 152
  if (in_var.generated_op_) {
    for (auto &pair : dev_ctxes_) {
      in_var.generated_op_->Wait(pair.second);
    }
C
chengduoZH 已提交
153 154 155
  }
}

C
chengduoZH 已提交
156
std::string BroadcastOpHandle::Name() const { return "broadcast"; }
C
chengduoZH 已提交
157 158 159
}  // namespace details
}  // namespace framework
}  // namespace paddle