parallel.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19 20
from multiprocessing import Process, Manager
import time
import sys
21 22 23 24 25 26 27 28

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
29
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
30 31 32 33 34

__all__ = ["init_parallel_env"]

ParallelStrategy = core.ParallelStrategy

35 36 37 38 39 40 41 42 43 44 45
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

46

47 48 49 50 51 52 53 54 55 56
def _start_kv_server(port, http_server_d):
    from paddle.distributed.fleet.utils.http_server import KVServer
    http_server = KVServer(int(port))
    http_server.start()
    wait_seconds = 5
    while http_server_d.get("running", False):
        time.sleep(wait_seconds)
    http_server.stop()


57
def init_parallel_env():
58
    """
59
    Initialize parallel training environment in dynamic graph mode.
60

61
    .. note::
62
        Now initialize both `NCCL` and `GLOO` contexts for communication.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
85
                # 1. initialize parallel environment
86 87
                dist.init_parallel_env()

88
                # 2. create data parallel layer & optimizer
89 90 91 92 93 94 95
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

96
                # 3. run layer
97 98 99 100 101 102 103 104 105 106 107 108 109 110
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

111 112 113 114 115 116 117 118 119 120 121 122
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return

123 124 125 126 127 128
    # 1. gpu check
    if not core.is_compiled_with_cuda():
        raise NotImplementedError(
            "Cannot initialize parallel environment in CPU-only version, now only "
            "supports initializing the GPU parallel environment. Please recompile "
            "or reinstall paddle with GPU support.")
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

    _check_var_exists("FLAGS_selected_gpus")
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

144
    # 3: init gloo context (step 1: httpsever start)
145 146
    ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
    ep_rank = parallel_env.trainer_endpoints[parallel_env.rank].split(":")
147 148 149 150
    manager = Manager()
    # glboal dict to store status
    http_server_d = manager.dict()
    http_server_d["running"] = False
151
    if parallel_env.rank == 0:
152 153 154 155 156 157 158
        http_server = Process(
            target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d))
        http_server.daemon = True
        http_server_d["running"] = True
        http_server.start()

    # 4. init NCCL ParallelStrategy
159
    strategy = ParallelStrategy()
160 161
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
162 163 164 165
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
166

167
    # NOTE(chenweihang): [ why config global place here? ]
168
    # the dygraph mode will be set to default mode,
169 170 171 172
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
173
    place = core.CUDAPlace(parallel_env.device_id)
174 175 176 177 178
    _set_expected_place(place)

    # init nccl context
    parallel_helper._set_parallel_ctx(core.NCCLParallelContext(strategy, place))
    parallel_helper._init_parallel_ctx()
179

180 181 182 183
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
184
    wait_server_ready([parallel_env.trainer_endpoints[0]])
185 186

    gloo_strategy = core.GlooParallelStrategy()
187 188
    gloo_strategy.rank = parallel_env.rank
    gloo_strategy.rank_num = parallel_env.world_size
189 190 191 192 193 194 195 196
    gloo_strategy.ip_address = ep_rank_0[0]
    gloo_strategy.ip_port = int(ep_rank_0[1])
    default_init_timeout_seconds = 3600
    default_run_timeout_seconds = 9999999
    gloo_strategy.init_seconds = default_init_timeout_seconds
    gloo_strategy.run_seconds = default_run_timeout_seconds
    gloo = core.GlooParallelContext(gloo_strategy)
    gloo.init()
197
    if parallel_env.rank == 0:
198 199 200
        http_server_d["running"] = False
        http_server.join()

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
222
    return _get_global_parallel_env().rank
223 224 225 226


def get_world_size():
    """
227
    Returns the number of trainers (number of processes participating in current job).
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
245
    return _get_global_parallel_env().world_size