resnet.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import numpy as np
import time
Y
yi.wu 已提交
22
import os
T
typhoonzero 已提交
23
import math
24 25 26 27 28 29 30

import cProfile, pstats, StringIO

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
W
Wu Yi 已提交
31
from imagenet_reader import train, val
32

T
typhoonzero 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class ResNet():
    def __init__(self, layers=50, is_train=True):
        self.params = train_parameters
        self.layers = layers
        self.is_train = is_train

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu')
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        out = fluid.layers.fc(input=pool,
                              size=class_dim,
                              act='softmax',
                              param_attr=fluid.param_attr.ParamAttr(
                                  initializer=fluid.initializer.Uniform(-stdv,
                                                                        stdv)))
        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False)
        return fluid.layers.batch_norm(
            input=conv, act=act, is_test=not self.is_train)

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            return self.conv_bn_layer(input, ch_out, 1, stride)
        else:
            return input
118

T
typhoonzero 已提交
119 120 121 122 123 124 125 126 127 128 129
    def bottleneck_block(self, input, num_filters, stride):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)
130

T
typhoonzero 已提交
131
        short = self.shortcut(input, num_filters * 4, stride)
132

T
typhoonzero 已提交
133
        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
134 135


W
Wu Yi 已提交
136
def _model_reader_dshape_classdim(args, is_train):
T
typhoonzero 已提交
137
    model = None
W
Wu Yi 已提交
138
    reader = None
T
typhoonzero 已提交
139
    if args.data_set == "flowers":
140 141 142 143 144
        class_dim = 102
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
W
Wu Yi 已提交
145 146 147 148
        if is_train:
            reader = paddle.dataset.flowers.train()
        else:
            reader = paddle.dataset.flowers.test()
149 150 151 152 153 154
    elif args.data_set == "imagenet":
        class_dim = 1000
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
Y
update  
yi.wu 已提交
155
        if not args.data_path:
156
            raise Exception(
Y
update  
yi.wu 已提交
157
                "Must specify --data_path when training with imagenet")
W
Wu Yi 已提交
158 159 160 161 162 163 164 165 166 167
        if not args.use_reader_op:
            if is_train:
                reader = train()
            else:
                reader = val()
        else:
            if is_train:
                reader = train(xmap=False)
            else:
                reader = val(xmap=False)
T
typhoonzero 已提交
168
    return reader, dshape, class_dim
W
Wu Yi 已提交
169 170 171


def get_model(args, is_train, main_prog, startup_prog):
T
typhoonzero 已提交
172
    reader, dshape, class_dim = _model_reader_dshape_classdim(args, is_train)
W
Wu Yi 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    pyreader = None
    trainer_count = int(os.getenv("PADDLE_TRAINERS"))
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            if args.use_reader_op:
                pyreader = fluid.layers.py_reader(
                    capacity=args.batch_size * args.gpus,
                    shapes=([-1] + dshape, (-1, 1)),
                    dtypes=('float32', 'int64'),
                    name="train_reader" if is_train else "test_reader",
                    use_double_buffer=True)
                input, label = fluid.layers.read_file(pyreader)
            else:
                input = fluid.layers.data(
                    name='data', shape=dshape, dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')

T
typhoonzero 已提交
192 193
            model = ResNet(is_train=is_train)
            predict = model.net(input, class_dim=class_dim)
194 195 196
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)

W
Wu Yi 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
            batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:
                if args.use_lars:
                    lars_decay = 1.0
                else:
                    lars_decay = 0.0

                total_images = 1281167 / trainer_count

                step = int(total_images / args.batch_size + 1)
T
typhoonzero 已提交
211
                epochs = [30, 60, 90]
W
Wu Yi 已提交
212 213 214 215 216
                bd = [step * e for e in epochs]
                base_lr = args.learning_rate
                lr = []
                lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
                optimizer = fluid.optimizer.Momentum(
T
typhoonzero 已提交
217 218
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=bd, values=lr),
W
Wu Yi 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))
                optimizer.minimize(avg_cost)

                if args.memory_optimize:
                    fluid.memory_optimize(main_prog)

    # config readers
    if not args.use_reader_op:
        batched_reader = paddle.batch(
            reader if args.no_random else paddle.reader.shuffle(
                reader, buf_size=5120),
            batch_size=args.batch_size * args.gpus,
            drop_last=True)
233
    else:
W
Wu Yi 已提交
234 235 236 237 238 239 240 241 242
        batched_reader = None
        pyreader.decorate_paddle_reader(
            paddle.batch(
                reader if args.no_random else paddle.reader.shuffle(
                    reader, buf_size=5120),
                batch_size=args.batch_size))

    return avg_cost, optimizer, [batch_acc1,
                                 batch_acc5], batched_reader, pyreader