squared_l2_distance_op.cc 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/squared_l2_distance_op.h"
16

H
Huihuang Zheng 已提交
17 18 19 20
#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"

21 22 23 24 25 26 27
namespace paddle {
namespace operators {

class SquaredL2DistanceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
29 30 31 32 33 34
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SquaredL2DistanceOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "SquaredL2DistanceOp");
    OP_INOUT_CHECK(ctx->HasOutput("sub_result"), "Output", "sub_result",
                   "SquaredL2DistanceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "SquaredL2DistanceOp");
35

Q
Qiao Longfei 已提交
36 37
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
38

39 40 41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
                      platform::errors::InvalidArgument(
                          "Input(X) and Input(X) of SquaredL2DistanceOp should "
                          "have same dimensions. "
                          "But received X's shape = [%s] and Y's shape = [%s], "
                          "the dimensions are %d and %d respectively",
                          x_dims, y_dims, framework::arity(x_dims),
                          framework::arity(y_dims)));
47 48

    int rank = framework::arity(x_dims);
49 50 51
    PADDLE_ENFORCE_GE(
        rank, 2,
        platform::errors::InvalidArgument(
52 53 54
            "Input dimensions of SquaredL2DistanceOp should be at least 2."
            "But received shape = [%s] and dimension is %d.",
            x_dims, rank));
X
xuezhong 已提交
55 56 57 58 59 60
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
61 62 63
      PADDLE_ENFORCE_EQ(
          product(x_dims) / x_dims[0], product(y_dims) / y_dims[0],
          platform::errors::InvalidArgument(
64 65 66 67 68 69
              "Input(X) and Input(Y) of SquaredL2DistanceOp should "
              "have same dimensions."
              "But received X's shape = [%s] and Y's shape = [%s]"
              ", the products are %d and %d respectively",
              x_dims, y_dims, product(x_dims) / x_dims[0],
              product(y_dims) / y_dims[0]));
X
xuezhong 已提交
70 71 72 73 74 75
    }
    check = true;
    if ((!ctx->IsRuntime()) && (y_dims[0] <= 0 || x_dims[0] <= 0)) {
      check = false;
    }
    if (check) {
76 77 78
      PADDLE_ENFORCE_EQ(
          y_dims[0] == 1 || y_dims[0] == x_dims[0], true,
          platform::errors::InvalidArgument(
79 80 81 82 83
              "First dimension of Input(Y) of SquaredL2DistanceOp "
              "must be equal to 1 or to first dimension of Input(X)."
              "But received X's shape = [%s] and Y's shape = [%s],"
              "the first dimensions are %d and %d respectively",
              x_dims, y_dims, x_dims[0], y_dims[0]));
X
xuezhong 已提交
84
    }
Q
Qiao Longfei 已提交
85 86 87
    ctx->SetOutputDim("sub_result", {x_dims[0], product(x_dims) / x_dims[0]});
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Out");
88 89 90
  }
};

91 92
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SquaredL2DistanceGradOpNoBufferVarsInferer,
                                    "X", "Y");
H
Huihuang Zheng 已提交
93

H
hong 已提交
94 95
template <typename T>
class SquaredL2DistanceGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
96
 public:
H
hong 已提交
97
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
98 99

 protected:
100
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
101 102
    op->SetType("squared_l2_distance_grad");

H
hong 已提交
103 104 105 106
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("sub_result", this->Output("sub_result"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
H
Huihuang Zheng 已提交
107

H
hong 已提交
108 109
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
H
Huihuang Zheng 已提交
110

H
hong 已提交
111
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
112 113 114
  }
};

115 116
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
117
  void Make() override {
118 119
    AddInput("X", "(Tensor) Input of SquaredL2DistanceOp.");
    AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp.");
120
    AddOutput("sub_result",
121
              "(Tensor) Buffering subtraction result which "
122 123
              "will be reused in backward.")
        .AsIntermediate();
124
    AddOutput("Out", "(Tensor) Squared l2 distance between input and target.");
125
    AddComment(R"DOC(
126 127 128 129 130 131 132 133 134 135 136 137
SquaredL2Distance operator

This operator will cacluate the squared L2 distance for the input and 
the target. Number of distance value will be equal to the first dimension 
of input. First dimension of the target could be equal to the input or to 1. 
If the first dimension of target is 1, the operator will broadcast target's 
first dimension to input's first dimension. During backward propagation, 
the user can decide whether to calculate the gradient of the input or 
the target or both.

Both the input X and Y can carry the LoD (Level of Details) information. 
However, the output only shares the LoD information with input X.
138 139 140 141 142 143 144 145
    )DOC");
  }
};

class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

146
  void InferShape(framework::InferShapeContext* ctx) const override {
147 148 149 150
    OP_INOUT_CHECK(ctx->HasInput("sub_result"), "Input", "sub_result",
                   "SquaredL2DistanceGradOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "SquaredL2DistanceGradOp");
Q
Qiao Longfei 已提交
151 152 153
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
154
    if (ctx->IsRuntime()) {
155 156 157
      PADDLE_ENFORCE_EQ(
          out_dims[0], x_dims[0],
          platform::errors::InvalidArgument(
158 159 160 161 162
              "First dimension of output gradient and Input(X) "
              "of SquaredL2DistanceGradOp must be equal "
              "But received X's shape = [%s] and grad's shape = [%s], "
              "the first dimensions are %d and %d respectively",
              x_dims, out_dims, x_dims[0], out_dims[0]));
163
      PADDLE_ENFORCE_EQ(out_dims[1], 1,
164
                        platform::errors::InvalidArgument(
165 166 167 168 169
                            "Second dimension of output gradient of "
                            "SquaredL2DistanceGradOp must be 1. "
                            "But received grad's shape = [%s], "
                            "with second dimension %d",
                            out_dims, out_dims[1]));
170
    }
Q
Qiao Longfei 已提交
171 172 173 174
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) ctx->SetOutputDim(x_grad_name, x_dims);
    if (ctx->HasOutput(y_grad_name)) ctx->SetOutputDim(y_grad_name, y_dims);
175
  }
H
Huihuang Zheng 已提交
176 177 178 179

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
180 181 182
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "sub_result"),
        ctx.GetPlace());
H
Huihuang Zheng 已提交
183
  }
184 185 186 187 188 189
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
190 191 192 193 194
REGISTER_OPERATOR(
    squared_l2_distance, ops::SquaredL2DistanceOp,
    ops::SquaredL2DistanceOpMaker,
    ops::SquaredL2DistanceGradOpMaker<paddle::framework::OpDesc>,
    ops::SquaredL2DistanceGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
195
REGISTER_OPERATOR(squared_l2_distance_grad, ops::SquaredL2DistanceGradOp,
196
                  ops::SquaredL2DistanceGradOpNoBufferVarsInferer);
197 198
REGISTER_OP_CPU_KERNEL(
    squared_l2_distance,
Q
QI JUN 已提交
199 200 201 202
    ops::SquaredL2DistanceKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(squared_l2_distance_grad,
                       ops::SquaredL2DistanceGradKernel<
                           paddle::platform::CPUDeviceContext, float>);