test_regularizer_api.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
from functools import partial
import contextlib
import numpy as np
L
littletomatodonkey 已提交
21
import random
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.regularizer as regularizer
from paddle.fluid.backward import append_backward


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=8,
            hid_dim=8,
            hid_dim2=6,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
44 45 46
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
47 48 49 50 51 52 53 54 55 56 57 58
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestRegularizer(unittest.TestCase):
59

60
    def setUp(self):
L
littletomatodonkey 已提交
61 62 63
        self.word_len = 1500
        self.train_data = [[(random.sample(range(1000), 10), [0])]
                           for _ in range(2)]
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    @contextlib.contextmanager
    def scope_prog_guard(self, main_prog, startup_prog):
        scope = fluid.core.Scope()
        with fluid.unique_name.guard():
            with fluid.scope_guard(scope):
                with fluid.program_guard(main_prog, startup_prog):
                    yield

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_l2decay_regularizer(self, place, model):
C
cnn 已提交
99
        paddle.seed(1)
100 101 102
        paddle.framework.random._manual_program_seed(1)
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
103 104 105 106 107 108
        with self.scope_prog_guard(main_prog=main_prog,
                                   startup_prog=startup_prog):
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
109 110
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
111
            avg_cost = model(data, label, self.word_len)
112 113 114 115 116 117 118 119 120

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.1,
                regularization=paddle.regularizer.L2Decay(1.0))
            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def check_l2decay(self, place, model):
C
cnn 已提交
121
        paddle.seed(1)
122 123 124 125
        paddle.framework.random._manual_program_seed(1)
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()

126 127 128 129 130 131
        with self.scope_prog_guard(main_prog=main_prog,
                                   startup_prog=startup_prog):
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
132 133
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
134
            avg_cost_l2 = model(data, label, self.word_len)
135 136 137 138 139 140 141 142 143 144 145 146 147 148

            param_list = fluid.default_main_program().block(0).all_parameters()
            para_sum = []
            for para in param_list:
                para_mul = fluid.layers.square(x=para)
                para_sum.append(fluid.layers.reduce_sum(input=para_mul))
            avg_cost_l2 += fluid.layers.sums(para_sum) * .5

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
            optimizer.minimize(avg_cost_l2)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_l2(self):
L
littletomatodonkey 已提交
149
        paddle.enable_static()
150 151 152 153 154 155 156 157 158 159 160 161 162
        for place in self.get_places():
            dense_sparse_p_sum = []
            for sparse in [True, False]:
                model = partial(bow_net, is_sparse=sparse)
                framework_l2 = self.check_l2decay_regularizer(place, model)
                l2 = self.check_l2decay(place, model)
                assert len(l2) == len(framework_l2)
                for i in range(len(l2)):
                    assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
                dense_sparse_p_sum.append(framework_l2)

            assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
            for i in range(len(dense_sparse_p_sum[0])):
163 164 165
                assert np.isclose(a=dense_sparse_p_sum[0][i],
                                  b=dense_sparse_p_sum[1][i],
                                  rtol=5e-5)
166 167

    def test_repeated_regularization(self):
L
littletomatodonkey 已提交
168
        paddle.enable_static()
169 170 171 172 173 174 175 176 177 178 179 180
        l1 = paddle.regularizer.L1Decay(0.1)
        l2 = paddle.regularizer.L2Decay(0.01)
        fc_param_attr = fluid.ParamAttr(regularizer=l1)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.layers.uniform_random([2, 2, 3])
            out = fluid.layers.fc(x, 5, param_attr=fc_param_attr)
            loss = fluid.layers.reduce_sum(out)
            sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2)
            sgd.minimize(loss)
        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(
                np.random.randn(3, 2).astype('float32'))
C
cnn 已提交
181
            paddle.seed(1)
182 183
            paddle.framework.random._manual_program_seed(1)

184 185 186 187 188 189 190 191
            linear1 = fluid.dygraph.Linear(2,
                                           2,
                                           param_attr=fc_param_attr,
                                           bias_attr=fc_param_attr)
            linear2 = fluid.dygraph.Linear(2,
                                           2,
                                           param_attr=fc_param_attr,
                                           bias_attr=fc_param_attr)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

            loss1 = linear1(input)
            loss1.backward()
            # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr

            fluid.optimizer.SGD(parameter_list=linear1.parameters(),
                                learning_rate=1e-2,
                                regularization=l2).minimize(loss1)
            # only set l1 in fluid.ParamAttr
            loss2 = linear2(input)
            loss2.backward()
            fluid.optimizer.SGD(parameter_list=linear2.parameters(),
                                learning_rate=1e-2).minimize(loss2)
            # they should both be applied by l1, and keep the same
            self.assertTrue(
                np.allclose(linear1.weight.numpy(), linear2.weight.numpy()),
                "weight should use the regularization in fluid.ParamAttr!")
            self.assertTrue(
                np.allclose(linear1.bias.numpy(), linear2.bias.numpy()),
                "bias should use the regularization in fluid.ParamAttr!")


if __name__ == '__main__':
    unittest.main()