process_group_bkcl.py 7.0 KB
Newer Older
J
james 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import random
import numpy as np
import sys

import paddle
21
import paddle.distributed as dist
J
james 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv


def init_process_group(strategy=None):
    nranks = ParallelEnv().nranks
    rank = ParallelEnv().local_rank
    is_master = True if rank == 0 else False
    pg_group = dist.init_parallel_env()

    return pg_group.process_group


class TestProcessGroupFp32(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_bkcl(self):
        with _test_eager_guard():
48 49
            device_id = paddle.distributed.ParallelEnv().dev_id
            paddle.set_device('xpu:%d' % device_id)
J
james 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

            pg = init_process_group()
            sys.stdout.write(
                "rank {}: size {} name {}\n".format(
                    pg.rank(), pg.size(), pg.name()
                )
            )
            sys.stdout.write(
                "rank {}: test new group api ok\n".format(pg.rank())
            )

            # test allreduce sum
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
                task = dist.all_reduce(tensor_x)
                assert np.array_equal(tensor_x, sum_result)
            else:
                task = dist.all_reduce(tensor_y)
                assert np.array_equal(tensor_y, sum_result)

            sys.stdout.write(
                "rank {}: test allreduce sum api ok\n".format(pg.rank())
            )

            # TODO
            # test allreduce max/min/prod

            # test broadcast
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if pg.rank() == 0:
                # XPU don't support event query by now, so just use sync op here
                task = dist.broadcast(tensor_x, 0)
                paddle.device.xpu.synchronize()
                assert np.array_equal(broadcast_result, tensor_x)
            else:
                task = dist.broadcast(tensor_y, 0)
                paddle.device.xpu.synchronize()
                assert np.array_equal(broadcast_result, tensor_y)

            sys.stdout.write(
                "rank {}: test broadcast api ok\n".format(pg.rank())
            )

            # test barrier
            # rank 0
            if pg.rank() == 0:
110
                pg.barrier(device_id)
J
james 已提交
111 112
            # rank 1
            else:
113
                task = pg.barrier(device_id)
J
james 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                task.wait()

            sys.stdout.write("rank {}: test barrier api ok\n".format(pg.rank()))

            # test allgather
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            out_shape = list(self.shape)
            out_shape[0] *= 2
            out = np.random.random(out_shape).astype(self.dtype)
            tensor_out = paddle.to_tensor(out)
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.xpu.synchronize()
            # rank 1
            else:
                tensor_out_list = [
                    paddle.empty_like(tensor_x),
                    paddle.empty_like(tensor_x),
                ]
                task = dist.all_gather(tensor_out_list, tensor_y)
                paddle.device.xpu.synchronize()
                tensor_out = paddle.concat(tensor_out_list)
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
            out_2 = paddle.slice(
                tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
            )
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            sys.stdout.write(
                "rank {}: test allgather api ok\n".format(pg.rank())
            )

            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.xpu.synchronize()
            # rank 1
            else:
                tensor_out_list = []
                task = dist.all_gather(tensor_out_list, tensor_y)
                paddle.device.xpu.synchronize()
                tensor_out = paddle.concat(tensor_out_list)
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
            out_2 = paddle.slice(
                tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
            )
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            sys.stdout.write(
                "rank {}: test allgather api2 ok\n".format(pg.rank())
            )

J
james 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            # test Reduce
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
                task = dist.reduce(tensor_x, 0, sync_op=True)
                paddle.device.xpu.synchronize()
            # rank 1
            else:
                task = dist.reduce(tensor_y, 0, sync_op=False)
                task.wait()
                paddle.device.xpu.synchronize()
            if pg.rank() == 0:
                assert np.array_equal(tensor_x, sum_result)
            sys.stdout.write(
                "rank {}: test reduce sum api ok\n".format(pg.rank())
            )

J
james 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

class TestProcessGroupFp16(TestProcessGroupFp32):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float16"
        self.shape = (4, 20, 20)


if __name__ == "__main__":
    unittest.main()