MathFunctions.cpp 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MathFunctions.h"
#include "hl_matrix_apply.cuh"
Y
Yu Yang 已提交
17
#include "hl_matrix_ops.cuh"
L
liaogang 已提交
18
#include "paddle/utils/DynamicLoader.h"
L
liaogang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31

namespace dynload {

std::once_flag lapack_dso_flag;
void* lapack_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load lapack routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
32 33 34 35 36

// The argument for stringizing operator is not macro-expanded first.
// We have to use two levels of macro to do the expansion.
// See https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html
#define STR(x) #x
L
liaogang 已提交
37 38 39

// clang-format off
#ifndef LAPACK_FOUND
L
liaogang 已提交
40 41 42
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
L
liaogang 已提交
43
    auto operator()(Args... args) -> decltype(__name(args...)) {               \
L
liaogang 已提交
44 45
      using lapack_func = decltype(__name(args...)) (*)(Args...);              \
      std::call_once(lapack_dso_flag, GetLapackDsoHandle, &lapack_dso_handle); \
46 47 48
      void* p_##__name = dlsym(lapack_dso_handle, STR(__name));                \
      CHECK(p_##__name) << "Cannot find symbol " << STR(__name)                \
                        << " in liblapack.so";                                 \
L
liaogang 已提交
49 50 51
      return reinterpret_cast<lapack_func>(p_##__name)(args...);               \
    }                                                                          \
  } __name;  // struct DynLoad__##__name
L
liaogang 已提交
52 53 54 55 56 57 58 59 60
#else
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
    auto operator()(Args... args) -> decltype(__name(args...)) {               \
      return __name(args...);                                                  \
    }                                                                          \
  } __name;  // struct DynLoad__##__name
#endif
L
liaogang 已提交
61 62

#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
63 64 65 66
  #define  PADDLE_SGETRF  clapack_sgetrf
  #define  PADDLE_DGETRF  clapack_dgetrf
  #define  PADDLE_SGETRI  clapack_sgetri
  #define  PADDLE_DGETRI  clapack_dgetri
L
liaogang 已提交
67
#else
L
liaogang 已提交
68 69 70 71
  #define  PADDLE_SGETRF  LAPACKE_sgetrf
  #define  PADDLE_DGETRF  LAPACKE_dgetrf
  #define  PADDLE_SGETRI  LAPACKE_sgetri
  #define  PADDLE_DGETRI  LAPACKE_dgetri
72
#endif
L
liaogang 已提交
73 74 75 76 77 78 79 80

#define LAPACK_ROUTINE_EACH(__macro)       \
  __macro(PADDLE_SGETRF)                   \
  __macro(PADDLE_DGETRF)                   \
  __macro(PADDLE_SGETRI)                   \
  __macro(PADDLE_DGETRI)
// clang-format on

L
liaogang 已提交
81 82
LAPACK_ROUTINE_EACH(DYNAMIC_LOAD_LAPACK_WRAP)

L
liaogang 已提交
83
}  // namespace dynload
Z
zhangjinchao01 已提交
84 85 86

namespace paddle {

87
#ifndef PADDLE_USE_EIGEN_FOR_BLAS
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
template <>
void gemm<float>(const CBLAS_TRANSPOSE transA,
                 const CBLAS_TRANSPOSE transB,
                 const int M,
                 const int N,
                 const int K,
                 const float alpha,
                 const float* A,
                 const int lda,
                 const float* B,
                 const int ldb,
                 const float beta,
                 float* C,
                 const int ldc) {
  cblas_sgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
void gemm<double>(const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB,
                  const int M,
                  const int N,
                  const int K,
                  const double alpha,
                  const double* A,
                  const int lda,
                  const double* B,
                  const int ldb,
                  const double beta,
                  double* C,
                  const int ldc) {
  cblas_dgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}
147
#endif
148 149 150 151 152 153 154 155

template <>
int getrf<float>(const CBLAS_ORDER order,
                 const int M,
                 const int N,
                 float* A,
                 const int lda,
                 int* ipiv) {
L
liaogang 已提交
156
  return dynload::PADDLE_SGETRF(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
157 158
}

159 160 161 162 163 164 165
template <>
int getrf<double>(const CBLAS_ORDER order,
                  const int M,
                  const int N,
                  double* A,
                  const int lda,
                  int* ipiv) {
L
liaogang 已提交
166
  return dynload::PADDLE_DGETRF(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
167 168
}

169 170 171 172 173 174
template <>
int getri<float>(const CBLAS_ORDER order,
                 const int N,
                 float* A,
                 const int lda,
                 const int* ipiv) {
L
liaogang 已提交
175
  return dynload::PADDLE_SGETRI(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
176 177
}

178 179 180 181 182 183
template <>
int getri<double>(const CBLAS_ORDER order,
                  const int N,
                  double* A,
                  const int lda,
                  const int* ipiv) {
L
liaogang 已提交
184
  return dynload::PADDLE_DGETRI(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
185 186
}

187
#ifndef PADDLE_USE_EIGEN_FOR_BLAS
188
template <>
Z
zhangjinchao01 已提交
189 190 191 192
void axpy<float>(const int n, const float alpha, const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

193
template <>
Z
zhangjinchao01 已提交
194 195 196 197
void axpy<double>(const int n, const double alpha, const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

198
template <>
Z
zhangjinchao01 已提交
199 200 201 202
float dotProduct<float>(const int n, const float* x, const float* y) {
  return cblas_sdot(n, x, 1, y, 1);
}

203
template <>
Z
zhangjinchao01 已提交
204 205 206
double dotProduct<double>(const int n, const double* x, const double* y) {
  return cblas_ddot(n, x, 1, y, 1);
}
207
#endif
Z
zhangjinchao01 已提交
208

T
tensor-tang 已提交
209
#if defined(PADDLE_USE_MKL) || defined(PADDLE_USE_MKLML)
Z
zhangjinchao01 已提交
210

211
template <>
Z
zhangjinchao01 已提交
212 213 214 215
void vExp<float>(const int n, const float* a, float* r) {
  vsExp(n, a, r);
}

216
template <>
Z
zhangjinchao01 已提交
217 218 219 220
void vExp<double>(const int n, const double* a, double* r) {
  vdExp(n, a, r);
}

221
template <>
Z
zhangjinchao01 已提交
222 223 224 225
void vPow<float>(const int n, const float* a, const float b, float* r) {
  vsPowx(n, a, b, r);
}

226
template <>
Z
zhangjinchao01 已提交
227 228 229 230
void vPow<double>(const int n, const double* a, const double b, double* r) {
  vdPowx(n, a, b, r);
}

231
template <>
Z
zhangjinchao01 已提交
232 233 234 235
void vLog<float>(const int n, const float* a, float* r) {
  vsLn(n, a, r);
}

236
template <>
Z
zhangjinchao01 已提交
237 238 239 240
void vLog<double>(const int n, const double* a, double* r) {
  vdLn(n, a, r);
}

241
template <>
Z
zhangjinchao01 已提交
242 243 244 245
void vAdd<float>(const int n, const float* a, const float* b, float* r) {
  vsAdd(n, a, b, r);
}

246
template <>
Z
zhangjinchao01 已提交
247 248 249
void vAdd<double>(const int n, const double* a, const double* b, double* r) {
  vdAdd(n, a, b, r);
}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#else

DEFINE_MATRIX_BINARY_OP(vExp, b = std::exp(a));
template <class T>
void vExp(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vExp<T>, 0, 0>(
      binary::vExp<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vLog, b = std::log(a));
template <class T>
void vLog(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog<T>, 0, 0>(
      binary::vLog<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(vPow, ONE_PARAMETER, b = std::pow(a, p));
template <class T>
void vPow(const int n, const T* a, const T b, T* r) {
  hl_cpu_apply_binary_op<T, binary::vPow<T>, 0, 0>(
      binary::vPow<T>(b), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_TERNARY_OP(vAdd, c = a + b);
template <class T>
void vAdd(const int n, const T* a, const T* b, T* r) {
  hl_cpu_apply_ternary_op<T, ternary::vAdd<T>, 0, 0>(ternary::vAdd<T>(),
                                                     const_cast<T*>(a),
                                                     const_cast<T*>(b),
                                                     r,
                                                     1,
                                                     n,
                                                     n,
                                                     n,
                                                     n);
}

template void vExp(const int n, const float* a, float* r);
template void vExp(const int n, const double* a, double* r);
template void vLog(const int n, const float* a, float* r);
template void vLog(const int n, const double* a, double* r);
template void vPow(const int n, const float* a, const float b, float* r);
template void vPow(const int n, const double* a, const double b, double* r);
template void vAdd(const int n, const float* a, const float* b, float* r);
template void vAdd(const int n, const double* a, const double* b, double* r);
Z
zhangjinchao01 已提交
295

296 297 298
#endif

#ifdef PADDLE_USE_MKL
299
template <>
Z
zhangjinchao01 已提交
300 301 302 303
void vInvSqrt<float>(const int n, const float* a, float* r) {
  vsInvSqrt(n, a, r);
}

304
template <>
Z
zhangjinchao01 已提交
305 306 307 308
void vInvSqrt<double>(const int n, const double* a, double* r) {
  vdInvSqrt(n, a, r);
}

309
template <>
Z
zhangjinchao01 已提交
310 311 312 313
void vLog1p<float>(const int n, const float* a, float* r) {
  vsLog1p(n, a, r);
}

314
template <>
Z
zhangjinchao01 已提交
315 316 317 318
void vLog1p<double>(const int n, const double* a, double* r) {
  vdLog1p(n, a, r);
}

319
template <>
Z
zhangjinchao01 已提交
320 321 322 323
void vTanh<float>(const int n, const float* a, float* r) {
  vsTanh(n, a, r);
}

324
template <>
Z
zhangjinchao01 已提交
325 326 327 328 329 330
void vTanh<double>(const int n, const double* a, double* r) {
  vdTanh(n, a, r);
}
#else

DEFINE_MATRIX_BINARY_OP(vInvSqrt, b = 1.0f / std::sqrt(a));
331
template <class T>
Z
zhangjinchao01 已提交
332 333
void vInvSqrt(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vInvSqrt<T>, 0, 0>(
334
      binary::vInvSqrt<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
335 336 337
}

DEFINE_MATRIX_BINARY_OP(vLog1p, b = std::log(1.0f + a));
338
template <class T>
Z
zhangjinchao01 已提交
339 340
void vLog1p(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog1p<T>, 0, 0>(
341
      binary::vLog1p<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
342 343
}

344 345 346 347
DEFINE_MATRIX_BINARY_OP(vTanh, T tmp = -2.0 * a;
                        tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
                        b = 2.0 / (1.0 + std::exp(tmp)) - 1.0);
template <class T>
Z
zhangjinchao01 已提交
348 349
void vTanh(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vTanh<T>, 0, 0>(
350
      binary::vTanh<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
351 352 353 354 355 356 357 358 359 360 361 362
}

template void vInvSqrt(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const float* a, float* r);
template void vLog1p(const int n, const float* a, float* r);
template void vLog1p(const int n, const double* a, double* r);
template void vTanh(const int n, const float* a, float* r);
template void vTanh(const int n, const double* a, double* r);

#endif

}  // namespace paddle