auto_parallel_gpt_model.py 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import random
import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.tensor as tensor
23
from paddle.distributed.fleet import auto
24 25 26 27 28 29 30 31 32 33 34
from paddle import fluid
from paddle.fluid import layers
from paddle.distributed import fleet
from paddle.nn.layer.transformer import _convert_param_attr_to_list
from paddle.fluid.initializer import Normal, NumpyArrayInitializer

paddle.enable_static()


def init_global():
    global _global_parallel_strategy
35
    _global_parallel_strategy = None
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    global _global_process_mesh
    global PP_MESH_LIST
    global DPPP_MESH_LIST
    global MPPP_MESH_LIST
    global DPMPPP_MESH_LIST


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    """
    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False,
                 weight_attr=None,
                 bias_attr=None,
                 fuse=False,
                 mesh_idx=None):
        super(MultiHeadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights
        self.fuse = fuse
        self.mesh_idx = mesh_idx
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        if self.fuse:
            assert self.kdim == embed_dim
            assert self.vdim == embed_dim
77 78 79 80
            self.qkv_proj = nn.Linear(embed_dim,
                                      3 * embed_dim,
                                      weight_attr,
                                      bias_attr=bias_attr)
81
        else:
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            self.q_proj = nn.Linear(embed_dim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
            self.k_proj = nn.Linear(self.kdim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
            self.v_proj = nn.Linear(self.vdim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
        self.out_proj = nn.Linear(embed_dim,
                                  embed_dim,
                                  weight_attr=weight_attr,
                                  bias_attr=bias_attr)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    def _fuse_prepare_qkv(self, query):
        mix_layer = self.qkv_proj(query)
        mix_layer = paddle.reshape_(mix_layer,
                                    [0, 0, self.num_heads, 3 * self.head_dim])
        mix_layer = paddle.transpose(mix_layer, [0, 2, 1, 3])
        q, k, v = paddle.split(mix_layer, num_or_sections=3, axis=-1)
        return q, k, v

    def _prepare_qkv(self, query, key, value, use_cache=False, cache=None):
        """
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.
        """
        q = self.q_proj(query)
        if _global_parallel_strategy == "mp":
115 116
            auto.shard_tensor(self.q_proj.weight, _global_process_mesh,
                              [None, "x"])
117
        elif _global_parallel_strategy == "dp_mp":
118 119
            auto.shard_tensor(self.q_proj.weight, _global_process_mesh,
                              [None, "y"])
120
        elif _global_parallel_strategy == "mp_pp":
121 122
            auto.shard_tensor(self.q_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
123
        elif _global_parallel_strategy == "dp_mp_pp":
124
            auto.shard_tensor(self.q_proj.weight,
125 126
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)
        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
        if use_cache is True:
            cache = self.Cache(k, v)
        return (q, k, v) if use_cache is False else (q, k, v, cache)

    def compute_kv(self, key, value):
        """
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces. The results are used as key-values pairs for subsequent multiple
        parallel attention.
        It is part of calculations in multi-head attention, and is provided as
        a method to pre-compute and prefetch these results, thus we can use them
        to construct cache for inference.
        """
        k = self.k_proj(key)
        if _global_parallel_strategy == "mp":
154 155
            auto.shard_tensor(self.k_proj.weight, _global_process_mesh,
                              [None, "x"])
156
        elif _global_parallel_strategy == "dp_mp":
157 158
            auto.shard_tensor(self.k_proj.weight, _global_process_mesh,
                              [None, "y"])
159
        elif _global_parallel_strategy == "mp_pp":
160 161
            auto.shard_tensor(self.k_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
162
        elif _global_parallel_strategy == "dp_mp_pp":
163
            auto.shard_tensor(self.k_proj.weight,
164
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])
165 166
        v = self.v_proj(value)
        if _global_parallel_strategy == "mp":
167 168
            auto.shard_tensor(self.v_proj.weight, _global_process_mesh,
                              [None, "x"])
169
        elif _global_parallel_strategy == "dp_mp":
170 171
            auto.shard_tensor(self.v_proj.weight, _global_process_mesh,
                              [None, "y"])
172
        elif _global_parallel_strategy == "mp_pp":
173 174
            auto.shard_tensor(self.v_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
175
        elif _global_parallel_strategy == "dp_mp_pp":
176
            auto.shard_tensor(self.v_proj.weight,
177
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

    def gen_cache(self, key, value=None, type=Cache):
        """
        Generates cache for `forward` usage in inference accroding to arguments.
        The generated cache is an instance of `MultiHeadAttention.Cache` or an
        instance of `MultiHeadAttention.StaticCache`.
        """
        if type == MultiHeadAttention.StaticCache:  # static_kv
            k, v = self.compute_kv(key, value)
            return self.StaticCache(k, v)
        elif value is None:  # incremental_state
            k = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            v = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            return self.Cache(k, v)
        else:
            # incremental_state with initial value, mainly for usage like UniLM
            return self.Cache(key, value)

    def forward(self,
                query,
                key,
                value,
                attn_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
        """
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
        if use_cache is False:
            if self.fuse:
                q, k, v = self._fuse_prepare_qkv(query)
            else:
                q, k, v = self._prepare_qkv(query, key, value, use_cache, cache)
        else:
            q, k, v, cache = self._prepare_qkv(query, key, value, use_cache,
                                               cache)
231 232 233 234
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
235 236 237 238
        if attn_mask is not None:
            product = product + attn_mask
        weights = F.softmax(product)
        if self.dropout:
239 240 241 242
            weights = F.dropout(weights,
                                self.dropout,
                                training=self.training,
                                mode="upscale_in_train")
243 244 245 246 247 248 249
        out = tensor.matmul(weights, v)
        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
        # project to output
        out = self.out_proj(out)
        if _global_parallel_strategy == "mp":
250 251
            auto.shard_tensor(self.out_proj.weight, _global_process_mesh,
                              ["x", None])
252
        elif _global_parallel_strategy == "dp_mp":
253 254
            auto.shard_tensor(self.out_proj.weight, _global_process_mesh,
                              ["y", None])
255
        elif _global_parallel_strategy == "mp_pp":
256
            auto.shard_tensor(self.out_proj.weight,
257
                              MPPP_MESH_LIST[self.mesh_idx], ["x", None])
258
        elif _global_parallel_strategy == "dp_mp_pp":
259
            auto.shard_tensor(self.out_proj.weight,
260 261
                              DPMPPP_MESH_LIST[self.mesh_idx], ["y", None])

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        outs = [out]
        if self.need_weights:
            outs.append(weights)
        if use_cache:
            outs.append(cache)
        return out if len(outs) == 1 else tuple(outs)


class TransformerDecoder(nn.Layer):
    """
    TransformerDecoder is a stack of N decoder layers.
    """

    def __init__(self, decoder_layers, num_layers, norm=None, hidden_size=None):
        super(TransformerDecoder, self).__init__()

        self.num_layers = num_layers
        self.layers = decoder_layers
        self.norm = norm
        if norm is "LayerNorm":
            self.norm = nn.LayerNorm(hidden_size)
        elif norm is not None:
            raise ValueError("Only support LayerNorm")
        self.checkpoints = []

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.
        """
        output = tgt
        new_caches = []
        self.checkpoints = []
        if _global_parallel_strategy == "pp":
303 304
            auto.shard_tensor(output, PP_MESH_LIST[0],
                              [None for i in range(len(output.shape))])
305
        if _global_parallel_strategy == "dp_pp":
306 307
            auto.shard_tensor(output, DPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(output.shape) - 1)]))
308
        if _global_parallel_strategy == "mp_pp":
309 310
            auto.shard_tensor(output, MPPP_MESH_LIST[0],
                              [None for i in range(len(output.shape))])
311
        if _global_parallel_strategy == "dp_mp_pp":
312 313
            auto.shard_tensor(output, DPMPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(output.shape) - 1)]))
314 315 316 317 318
        for i, mod in enumerate(self.layers):
            if cache is None:
                if use_cache:
                    if _global_parallel_strategy == "pp":
                        output, new_cache = auto.shard_op(
319 320 321
                            mod, PP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                             tgt_mask,
                                                             use_cache, cache)
322
                        auto.shard_tensor(
323 324
                            output, PP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
325 326
                    elif _global_parallel_strategy == "dp_pp":
                        output, new_cache = auto.shard_op(
327 328 329
                            mod, DPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
330
                        auto.shard_tensor(
331 332
                            output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
333 334
                    elif _global_parallel_strategy == "mp_pp":
                        output, new_cache = auto.shard_op(
335 336 337
                            mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
338
                        auto.shard_tensor(
339 340
                            output, MPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
341 342 343
                    elif _global_parallel_strategy == "dp_mp_pp":
                        output, new_cache = auto.shard_op(
                            mod,
344 345 346
                            DPMPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                            tgt_mask, use_cache,
                                                            cache)
347
                        auto.shard_tensor(
348 349
                            output, DPMPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
350 351 352 353 354 355 356 357 358
                    else:
                        output, new_cache = mod(output,
                                                memory,
                                                tgt_mask=tgt_mask,
                                                use_cache=use_cache,
                                                cache=cache)
                    new_caches.append(new_cache)
                else:
                    if _global_parallel_strategy == "pp":
359 360
                        output = auto.shard_op(mod, PP_MESH_LIST[mod.mesh_idx])(
                            output, memory, tgt_mask, use_cache, cache)
361
                        auto.shard_tensor(
362 363
                            output, PP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
364
                    elif _global_parallel_strategy == "dp_pp":
365 366 367 368
                        output = auto.shard_op(
                            mod, DPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
369
                        auto.shard_tensor(
370 371
                            output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
372
                    elif _global_parallel_strategy == "mp_pp":
373 374 375 376
                        output = auto.shard_op(
                            mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
377
                        auto.shard_tensor(
378 379
                            output, MPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
380
                    elif _global_parallel_strategy == "dp_mp_pp":
381 382 383 384
                        output = auto.shard_op(mod,
                                               DPMPPP_MESH_LIST[mod.mesh_idx])(
                                                   output, memory, tgt_mask,
                                                   use_cache, cache)
385
                        auto.shard_tensor(
386 387 388
                            output, DPMPPP_MESH_LIST[mod.mesh_idx],
                            ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
389 390 391 392 393 394 395 396 397 398
                    else:
                        output = mod(output,
                                     memory,
                                     tgt_mask=tgt_mask,
                                     use_cache=use_cache,
                                     cache=cache)
            else:
                if _global_parallel_strategy == "pp":
                    output, new_cache = auto.shard_op(
                        mod,
399 400 401 402
                        PP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                    use_cache, cache)
                    auto.shard_tensor(output, PP_MESH_LIST[mod.mesh_idx],
                                      [None for i in range(len(output.shape))])
403 404 405
                elif _global_parallel_strategy == "dp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
406 407 408 409 410
                        DPPP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                      use_cache, cache)
                    auto.shard_tensor(output, DPPP_MESH_LIST[mod.mesh_idx], [
                        "x"
                    ].extends([None for i in range(len(output.shape) - 1)]))
411 412 413
                elif _global_parallel_strategy == "mp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
414 415 416 417
                        MPPP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                      use_cache, cache)
                    auto.shard_tensor(output, MPPP_MESH_LIST[mod.mesh_idx],
                                      [None for i in range(len(output.shape))])
418 419
                elif _global_parallel_strategy == "dp_mp_pp":
                    output, new_cache = auto.shard_op(
420 421 422 423 424 425
                        mod, DPMPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                             tgt_mask,
                                                             use_cache, cache)
                    auto.shard_tensor(output, DPMPPP_MESH_LIST[mod.mesh_idx], [
                        "x"
                    ].extends([None for i in range(len(output.shape) - 1)]))
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
                else:
                    output, new_cache = mod(output,
                                            memory,
                                            tgt_mask=tgt_mask,
                                            use_cache=use_cache,
                                            cache=cache[i])
                new_caches.append(new_cache)
            self.checkpoints.append(output.name)
        if self.norm is not None:
            output = self.norm(output)
        return output if use_cache is False else (output, new_caches)

    def gen_cache(self, memory, do_zip=False):
        """
        Generates cache for `forward` usage. The generated cache is a list, and
        each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
        produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
        for more details. If `do_zip` is True, apply `zip` on these tuples to get
        a list with two elements.
       """
        cache = [layer.gen_cache(memory) for layer in self.layers]
        if do_zip:
            cache = list(zip(*cache))
        return cache


class TransformerDecoderLayer(nn.Layer):
    """
    The transformer decoder layer.
    It contains multiheadattention and some linear layers.
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="gelu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=True,
                 weight_attr=None,
                 bias_attr=None,
                 mesh_idx=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3
        self.mesh_idx = mesh_idx
        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before
        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)
480 481 482 483 484 485 486 487 488 489 490 491 492 493
        self.self_attn = MultiHeadAttention(d_model,
                                            nhead,
                                            dropout=attn_dropout,
                                            weight_attr=weight_attrs[0],
                                            bias_attr=bias_attrs[0],
                                            mesh_idx=self.mesh_idx)
        self.linear1 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attrs[2],
                                 bias_attr=bias_attrs[2])
        self.linear2 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attrs[2],
                                 bias_attr=bias_attrs[2])
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        self.norm1 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.norm2 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)

    def forward(self, tgt, memory, tgt_mask=None, use_cache=False, cache=None):
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        if use_cache is False:
            tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, use_cache, cache)
        else:
            tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
                                                    use_cache, cache)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)
        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        if _global_parallel_strategy == "mp":
516 517
            auto.shard_tensor(self.linear1.weight, _global_process_mesh,
                              [None, "x"])
518
        elif _global_parallel_strategy == "dp_mp":
519 520
            auto.shard_tensor(self.linear1.weight, _global_process_mesh,
                              [None, "y"])
521
        elif _global_parallel_strategy == "mp_pp":
522
            auto.shard_tensor(self.linear1.weight,
523
                              MPPP_MESH_LIST[self.mesh_idx], [None, "x"])
524
        if _global_parallel_strategy == "dp_mp_pp":
525
            auto.shard_tensor(self.linear1.weight,
526 527
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])

528
        if _global_parallel_strategy == "mp":
529 530
            auto.shard_tensor(self.linear2.weight, _global_process_mesh,
                              ["x", None])
531
        elif _global_parallel_strategy == "dp_mp":
532 533
            auto.shard_tensor(self.linear2.weight, _global_process_mesh,
                              ["y", None])
534
        elif _global_parallel_strategy == "mp_pp":
535
            auto.shard_tensor(self.linear2.weight,
536
                              MPPP_MESH_LIST[self.mesh_idx], ["x", None])
537
        elif _global_parallel_strategy == "dp_mp_pp":
538
            auto.shard_tensor(self.linear2.weight,
539
                              DPMPPP_MESH_LIST[self.mesh_idx], ["y", None])
540
        tgt = self.dropout2(
541
            self.linear2(F.gelu(self.linear1(tgt), approximate=True)))
542 543 544 545 546 547
        tgt = residual + tgt
        if not self.normalize_before:
            tgt = self.norm2(tgt)
        return tgt if use_cache is False else (tgt, incremental_cache)

    def gen_cache(self, memory):
548 549
        incremental_cache = self.self_attn.gen_cache(memory,
                                                     type=self.self_attn.Cache)
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        return incremental_cache


class GPTEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02):
        super(GPTEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size,
            hidden_size,
569 570 571
            weight_attr=paddle.ParamAttr(name="word_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0, std=initializer_range)))
572 573 574
        self.position_embeddings = nn.Embedding(
            max_position_embeddings,
            hidden_size,
575 576 577
            weight_attr=paddle.ParamAttr(name="pos_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0, std=initializer_range)))
578 579 580 581 582 583 584 585 586
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, position_ids=None):
        if position_ids is None:
            ones = paddle.ones_like(input_ids, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=-1)
            position_ids = seq_length - ones
        input_embedings = self.word_embeddings(input_ids)
        if _global_parallel_strategy == "mp":
587 588
            auto.shard_tensor(self.word_embeddings.weight, _global_process_mesh,
                              ["x", None])
589
        elif _global_parallel_strategy == "dp_mp":
590 591
            auto.shard_tensor(self.word_embeddings.weight, _global_process_mesh,
                              ["y", None])
592
        elif _global_parallel_strategy == "mp_pp":
593 594
            auto.shard_tensor(self.word_embeddings.weight, MPPP_MESH_LIST[0],
                              ["x", None])
595
        elif _global_parallel_strategy == "dp_mp_pp":
596 597 598
            auto.shard_tensor(self.word_embeddings.weight, DPMPPP_MESH_LIST[0],
                              ["y", None])

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = input_embedings + position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class GPTModel(nn.Layer):
    """
    The base model of gpt.
    """

    def __init__(self,
                 vocab_size=50304,
                 hidden_size=1024,
                 num_hidden_layers=24,
                 num_attention_heads=16,
                 intermediate_size=4096,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.,
                 attention_probs_dropout_prob=0.,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0,
                 eos_token_id=7,
                 bos_token_id=0,
                 eol_token_id=3,
                 pp_degree=None):
        super(GPTModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.layer_per_stage = None
        self.pipline_mode = (pp_degree is not None and pp_degree > 1)
        if self.pipline_mode:
            self.layer_per_stage = num_hidden_layers // pp_degree
636 637 638 639
        self.embeddings = GPTEmbeddings(vocab_size, hidden_size,
                                        hidden_dropout_prob,
                                        max_position_embeddings,
                                        type_vocab_size, self.initializer_range)
640 641 642 643 644 645 646
        decoder_layers = nn.LayerList()
        for i in range(num_hidden_layers):
            mesh_index = None
            DecoderLayer = TransformerDecoderLayer
            if self.layer_per_stage is not None:
                mesh_index = i // self.layer_per_stage
            decoder_layers.append(
647 648 649 650 651 652 653 654 655 656 657 658
                DecoderLayer(d_model=hidden_size,
                             nhead=num_attention_heads,
                             dim_feedforward=intermediate_size,
                             dropout=hidden_dropout_prob,
                             activation=hidden_act,
                             attn_dropout=attention_probs_dropout_prob,
                             act_dropout=hidden_dropout_prob,
                             weight_attr=paddle.ParamAttr(
                                 initializer=nn.initializer.Normal(
                                     mean=0.0, std=self.initializer_range)),
                             bias_attr=None,
                             mesh_idx=mesh_index))
659
        Decoder = TransformerDecoder
660 661 662 663
        self.decoder = Decoder(decoder_layers,
                               num_hidden_layers,
                               norm="LayerNorm",
                               hidden_size=hidden_size)
664 665 666 667 668 669 670 671 672 673 674 675 676
        self.checkpoints = []

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                use_cache=False,
                cache=None):
        self.checkpoints = []
        if position_ids is None:
            past_length = 0
            if cache is not None:
                past_length = paddle.shape(cache[0].k)[-2]
677 678 679 680
            position_ids = paddle.arange(past_length,
                                         paddle.shape(input_ids)[-1] +
                                         past_length,
                                         dtype='int64')
681
            position_ids = position_ids.unsqueeze(0)
682 683 684 685
            position_ids = paddle.fluid.layers.expand_as(
                position_ids, input_ids)
        embedding_output = self.embeddings(input_ids=input_ids,
                                           position_ids=position_ids)
686
        if _global_parallel_strategy == "pp":
687 688
            auto.shard_tensor(input_ids, PP_MESH_LIST[0],
                              [None for i in range(len(input_ids.shape))])
689
        if _global_parallel_strategy == "dp_pp":
690 691
            auto.shard_tensor(input_ids, DPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(input_ids.shape) - 1)]))
692
        if _global_parallel_strategy == "dp_mp_pp":
693 694
            auto.shard_tensor(input_ids, DPMPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(input_ids.shape) - 1)]))
695 696 697 698 699
        encoder_outputs = self.decoder(embedding_output,
                                       memory=None,
                                       tgt_mask=attention_mask,
                                       use_cache=use_cache,
                                       cache=cache)
700 701 702 703 704 705 706 707 708 709 710
        self.checkpoints.extend(self.decoder.checkpoints)
        return encoder_outputs


class GPTForPretraining(nn.Layer):
    """
    The pretraining model of GPT.
    It returns some logits and cached_kvs.
    """

    def __init__(
711 712 713 714 715 716
        self,
        gpt,
        vocab_size=50304,
        hidden_size=768,
        initializer_range=0.02,
    ):
717 718 719 720 721 722 723 724 725 726
        super(GPTForPretraining, self).__init__()
        self.gpt = gpt

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                masked_positions=None,
                use_cache=False,
                cache=None):
727 728 729 730
        input_ids.stop_gradient = True
        position_ids.stop_gradient = True
        attention_mask.stop_gradient = True

731 732 733 734 735 736 737 738 739
        outputs = self.gpt(input_ids,
                           position_ids=position_ids,
                           attention_mask=attention_mask,
                           use_cache=use_cache,
                           cache=cache)
        if use_cache:
            encoder_outputs, cached_kvs = outputs[:2]
        else:
            encoder_outputs = outputs
740 741 742 743

        x = encoder_outputs
        w = self.gpt.embeddings.word_embeddings.weight

744
        mesh = None
745 746
        if _global_parallel_strategy == "pp":
            mesh = PP_MESH_LIST[-1]
747 748
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = [None for i in range(len(w.shape))]
749
        elif _global_parallel_strategy == "dp":
750 751 752
            mesh = _global_process_mesh
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = [None for i in range(len(w.shape))]
753
        elif _global_parallel_strategy == "mp":
754 755 756
            mesh = _global_process_mesh
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = ["x"] + [None for i in range(len(w.shape) - 1)]
757
        elif _global_parallel_strategy == "dp_mp":
758 759 760
            mesh = _global_process_mesh
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = ["y"] + [None for i in range(len(w.shape) - 1)]
761 762
        elif _global_parallel_strategy == "dp_pp":
            mesh = DPPP_MESH_LIST[-1]
763 764
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = [None for i in range(len(w.shape))]
765 766
        elif _global_parallel_strategy == "mp_pp":
            mesh = MPPP_MESH_LIST[-1]
767 768
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = ["x"] + [-1 for i in range(len(w.shape) - 1)]
769 770
        elif _global_parallel_strategy == "dp_mp_pp":
            mesh = DPMPPP_MESH_LIST[-1]
771 772 773 774 775 776 777 778 779
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = ["y"] + [None for i in range(len(w.shape) - 1)]

        if mesh:
            matmul = auto.shard_op(paddle.matmul, mesh,
                                   [x_dims_mapping, w_dims_mapping, None])
            logits = matmul(x, w, transpose_y=True)
        else:
            logits = paddle.matmul(x, w, transpose_y=True)
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
        if use_cache:
            return logits, cached_kvs
        else:
            return logits


class GPTPretrainingCriterion(nn.Layer):
    """
    Criterion for GPT.
    It calculates the final loss.
    """

    def __init__(self):
        super(GPTPretrainingCriterion, self).__init__()
        self.loss_func = paddle.nn.CrossEntropyLoss(reduction="none")

    def forward(self, prediction_scores, masked_lm_labels, loss_mask):
798 799
        masked_lm_labels.stop_gradient = True
        loss_mask.stop_gradient = True
800

801
        mesh = None
802
        if _global_parallel_strategy == "dp":
803 804 805
            mesh = _global_process_mesh
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
806
        elif _global_parallel_strategy == "dp_mp":
807 808 809
            mesh = _global_process_mesh
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
810 811
        elif _global_parallel_strategy == "dp_pp":
            mesh = DPPP_MESH_LIST[-1]
812 813
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
814 815
        elif _global_parallel_strategy == "dp_mp_pp":
            mesh = DPMPPP_MESH_LIST[-1]
816 817
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
818

819 820
        if mesh:
            auto.shard_tensor(loss_mask, mesh, dims_mapping)
821

822 823 824 825 826
        masked_lm_loss = self.loss_func(prediction_scores,
                                        masked_lm_labels.unsqueeze(2))
        loss_mask = loss_mask.reshape([-1])
        masked_lm_loss = paddle.sum(masked_lm_loss.reshape([-1]) * loss_mask)
        total_loss = masked_lm_loss / loss_mask.sum()
Z
zhaoyingli 已提交
827
        return total_loss