shufflenetv2.py 17.0 KB
Newer Older
N
Nyakku Shigure 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
from paddle.fluid.param_attr import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Linear, MaxPool2D
from paddle.utils.download import get_weights_path_from_url

__all__ = []

model_urls = {
    "shufflenet_v2_x0_25": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams",
        "e753404cbd95027759c5f56ecd6c9c4b", ),
    "shufflenet_v2_x0_33": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams",
        "776e3cf9a4923abdfce789c45b8fe1f2", ),
    "shufflenet_v2_x0_5": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams",
        "e3649cf531566917e2969487d2bc6b60", ),
    "shufflenet_v2_x1_0": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams",
        "7821c348ea34e58847c43a08a4ac0bdf", ),
    "shufflenet_v2_x1_5": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams",
        "93a07fa557ab2d8803550f39e5b6c391", ),
    "shufflenet_v2_x2_0": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams",
        "4ab1f622fd0d341e0f84b4e057797563", ),
    "shufflenet_v2_swish": (
        "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams",
        "daff38b3df1b3748fccbb13cfdf02519", ),
}


def channel_shuffle(x, groups):
    batch_size, num_channels, height, width = x.shape[0:4]
    channels_per_group = num_channels // groups

    # reshape
    x = paddle.reshape(
        x, shape=[batch_size, groups, channels_per_group, height, width])

    # transpose
    x = paddle.transpose(x, perm=[0, 2, 1, 3, 4])

    # flatten
    x = paddle.reshape(x, shape=[batch_size, num_channels, height, width])
    return x


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()
        self._conv = Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(initializer=nn.initializer.KaimingNormal()),
            bias_attr=False, )

        self._batch_norm = BatchNorm(out_channels, act=act)

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._batch_norm(x)
        return x


class InvertedResidual(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu"):
        super(InvertedResidual, self).__init__()
        self._conv_pw = ConvBNLayer(
            in_channels=in_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        self._conv_dw = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None)
        self._conv_linear = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)

    def forward(self, inputs):
        x1, x2 = paddle.split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x2 = self._conv_pw(x2)
        x2 = self._conv_dw(x2)
        x2 = self._conv_linear(x2)
        out = paddle.concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class InvertedResidualDS(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu"):
        super(InvertedResidualDS, self).__init__()

        # branch1
        self._conv_dw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels,
            act=None)
        self._conv_linear_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        # branch2
        self._conv_pw_2 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        self._conv_dw_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None)
        self._conv_linear_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)

    def forward(self, inputs):
        x1 = self._conv_dw_1(inputs)
        x1 = self._conv_linear_1(x1)
        x2 = self._conv_pw_2(inputs)
        x2 = self._conv_dw_2(x2)
        x2 = self._conv_linear_2(x2)
        out = paddle.concat([x1, x2], axis=1)

        return channel_shuffle(out, 2)


class ShuffleNetV2(nn.Layer):
    """ShuffleNetV2 model from
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_

    Args:
        scale (float, optional) - scale of output channels. Default: True.
        act (str, optional) - activation function of neural network. Default: "relu".
        num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): use pool before the last fc layer or not. Default: True.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import ShuffleNetV2

            shufflenet_v2_swish = ShuffleNetV2(scale=1.0, act="swish")
            x = paddle.rand([1, 3, 224, 224])
            out = shufflenet_v2_swish(x)
            print(out.shape)

    """

    def __init__(self, scale=1.0, act="relu", num_classes=1000, with_pool=True):
        super(ShuffleNetV2, self).__init__()
        self.scale = scale
        self.num_classes = num_classes
        self.with_pool = with_pool
        stage_repeats = [4, 8, 4]

        if scale == 0.25:
            stage_out_channels = [-1, 24, 24, 48, 96, 512]
        elif scale == 0.33:
            stage_out_channels = [-1, 24, 32, 64, 128, 512]
        elif scale == 0.5:
            stage_out_channels = [-1, 24, 48, 96, 192, 1024]
        elif scale == 1.0:
            stage_out_channels = [-1, 24, 116, 232, 464, 1024]
        elif scale == 1.5:
            stage_out_channels = [-1, 24, 176, 352, 704, 1024]
        elif scale == 2.0:
            stage_out_channels = [-1, 24, 224, 488, 976, 2048]
        else:
            raise NotImplementedError("This scale size:[" + str(scale) +
                                      "] is not implemented!")
        # 1. conv1
        self._conv1 = ConvBNLayer(
            in_channels=3,
            out_channels=stage_out_channels[1],
            kernel_size=3,
            stride=2,
            padding=1,
            act=act)
        self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)

        # 2. bottleneck sequences
        self._block_list = []
        for stage_id, num_repeat in enumerate(stage_repeats):
            for i in range(num_repeat):
                if i == 0:
                    block = self.add_sublayer(
                        sublayer=InvertedResidualDS(
                            in_channels=stage_out_channels[stage_id + 1],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=2,
                            act=act),
                        name=str(stage_id + 2) + "_" + str(i + 1))
                else:
                    block = self.add_sublayer(
                        sublayer=InvertedResidual(
                            in_channels=stage_out_channels[stage_id + 2],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=1,
                            act=act),
                        name=str(stage_id + 2) + "_" + str(i + 1))
                self._block_list.append(block)
        # 3. last_conv
        self._last_conv = ConvBNLayer(
            in_channels=stage_out_channels[-2],
            out_channels=stage_out_channels[-1],
            kernel_size=1,
            stride=1,
            padding=0,
            act=act)
        # 4. pool
        if with_pool:
            self._pool2d_avg = AdaptiveAvgPool2D(1)

        # 5. fc
        if num_classes > 0:
            self._out_c = stage_out_channels[-1]
            self._fc = Linear(stage_out_channels[-1], num_classes)

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._max_pool(x)
        for inv in self._block_list:
            x = inv(x)
        x = self._last_conv(x)

        if self.with_pool:
            x = self._pool2d_avg(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, start_axis=1, stop_axis=-1)
            x = self._fc(x)
        return x


def _shufflenet_v2(arch, pretrained=False, **kwargs):
    model = ShuffleNetV2(**kwargs)
    if pretrained:
        assert (
            arch in model_urls
        ), "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])

        param = paddle.load(weight_path)
        model.set_dict(param)
    return model


def shufflenet_v2_x0_25(pretrained=False, **kwargs):
    """ShuffleNetV2 with 0.25x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x0_25

            # build model
            model = shufflenet_v2_x0_25()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x0_25(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x0_25", scale=0.25, pretrained=pretrained, **kwargs)


def shufflenet_v2_x0_33(pretrained=False, **kwargs):
    """ShuffleNetV2 with 0.33x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x0_33

            # build model
            model = shufflenet_v2_x0_33()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x0_33(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x0_33", scale=0.33, pretrained=pretrained, **kwargs)


def shufflenet_v2_x0_5(pretrained=False, **kwargs):
    """ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x0_5

            # build model
            model = shufflenet_v2_x0_5()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x0_5(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x0_5", scale=0.5, pretrained=pretrained, **kwargs)


def shufflenet_v2_x1_0(pretrained=False, **kwargs):
    """ShuffleNetV2 with 1.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x1_0

            # build model
            model = shufflenet_v2_x1_0()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x1_0(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x1_0", scale=1.0, pretrained=pretrained, **kwargs)


def shufflenet_v2_x1_5(pretrained=False, **kwargs):
    """ShuffleNetV2 with 1.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x1_5

            # build model
            model = shufflenet_v2_x1_5()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x1_5(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x1_5", scale=1.5, pretrained=pretrained, **kwargs)


def shufflenet_v2_x2_0(pretrained=False, **kwargs):
    """ShuffleNetV2 with 2.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_x2_0

            # build model
            model = shufflenet_v2_x2_0()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_x2_0(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_x2_0", scale=2.0, pretrained=pretrained, **kwargs)


def shufflenet_v2_swish(pretrained=False, **kwargs):
    """ShuffleNetV2 with 1.0x output channels and swish activation function, as described in
    `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import shufflenet_v2_swish

            # build model
            model = shufflenet_v2_swish()

            # build model and load imagenet pretrained weight
            # model = shufflenet_v2_swish(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    return _shufflenet_v2(
        "shufflenet_v2_swish",
        scale=1.0,
        act="swish",
        pretrained=pretrained,
        **kwargs)