selected_rows_impl.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/selected_rows_impl.h"
16

17
#include "paddle/phi/core/utils/data_type.h"
18

19 20 21
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/memory/memcpy.h"

22
namespace phi {
23 24

struct ReAllocateVisitor {
25
  ReAllocateVisitor(const phi::DDim& dims, phi::DenseTensor* tensor)
26 27 28 29
      : dims_(dims), tensor_(tensor) {}

  template <typename T>
  void operator()() const {
30
    phi::DenseTensor cpu_tensor;
31
    phi::CPUPlace cpu;
32 33 34 35 36 37 38 39 40
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

41 42
  phi::DDim dims_;
  phi::DenseTensor* tensor_;
43 44 45
};

struct TensorCopyVisitor {
46
  TensorCopyVisitor(phi::DenseTensor* dst,
47
                    int64_t dst_offset,
48
                    const phi::DenseTensor src,
49 50 51 52 53 54 55 56 57 58 59
                    int64_t src_offset,
                    int64_t size)
      : dst_(dst),
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(Yancey1989): support other place
60
    phi::CPUPlace cpu;
61 62 63
    std::memcpy(dst_->mutable_data<T>(cpu) + dst_offset_,
                src_.data<T>() + src_offset_,
                size_ * sizeof(T));
64 65
  }

66
  phi::DenseTensor* dst_;
67
  int64_t dst_offset_;
68
  phi::DenseTensor src_;
69 70 71 72 73
  int64_t src_offset_;
  int64_t size_;
};

struct TensorFillVisitor {
74
  TensorFillVisitor(phi::DenseTensor* dst,
75 76 77 78 79 80 81 82
                    int64_t dst_offset,
                    int64_t size,
                    float value)
      : dst_(dst), dst_offset_(dst_offset), size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(qiao): support other place
83
    phi::CPUPlace cpu;
84 85 86 87 88 89
    auto* tensor_data = dst_->mutable_data<T>(cpu);
    auto* start = tensor_data + dst_offset_;
    auto* end = start + size_;
    std::fill(start, end, static_cast<T>(0.0));
  }

90
  phi::DenseTensor* dst_;
91 92 93 94
  int64_t dst_offset_;
  int64_t size_;
};

J
Jiabin Yang 已提交
95 96 97
void* SelectedRowsImpl::AllocateFrom(Allocator* allocator,
                                     DataType dtype,
                                     size_t requested_size) {
98 99 100
  return value_->AllocateFrom(allocator, dtype, requested_size);
}

J
Jiabin Yang 已提交
101
bool SelectedRowsImpl::HasKey(int64_t key) const {
102 103 104 105
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

J
Jiabin Yang 已提交
106 107 108
int64_t SelectedRowsImpl::AutoGrownIndex(int64_t key,
                                         bool auto_grown,
                                         bool is_test) {
109 110 111 112 113 114 115 116 117 118 119 120 121
  if (is_test) {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

  rwlock_->RDLock();
  auto iter = id_to_index_.find(key);
  if (iter == id_to_index_.end()) {
    rwlock_->UNLock();
122 123 124 125
    PADDLE_ENFORCE_EQ(
        auto_grown,
        true,
        phi::errors::NotFound("Input key(%lld) is not found.", key));
126 127 128 129 130
    rwlock_->WRLock();
    auto map_size = id_to_index_.size();
    auto vector_size = rows_.size();
    if (map_size != vector_size) {
      rwlock_->UNLock();
131
      PADDLE_THROW(phi::errors::InvalidArgument(
132 133 134 135 136 137 138 139 140
          "Row map size(%zu) should be equal to rows size(%zu).",
          map_size,
          vector_size));
    }
    auto write_iter = id_to_index_.find(key);
    if (write_iter == id_to_index_.end()) {
      int row_num = rows_.size();
      if (row_num == value_->dims()[0]) {
        rwlock_->UNLock();
141
        PADDLE_THROW(phi::errors::InvalidArgument(
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            "Selected rows is full, then length exceed the length of first "
            "dimension (%d).",
            row_num));
      }
      // key logic to put a key into id_to_index_
      rows_.push_back(key);
      auto index = static_cast<int64_t>(rows_.size() - 1);
      id_to_index_[key] = index;
      rwlock_->UNLock();
      return index;
    } else {
      auto index = write_iter->second;
      rwlock_->UNLock();
      return index;
    }
  } else {
    auto index = iter->second;
    rwlock_->UNLock();
    return index;
  }
}

J
Jiabin Yang 已提交
164
void SelectedRowsImpl::SyncIndex() {
165 166 167 168 169 170 171 172
  rwlock_->WRLock();
  id_to_index_.clear();
  for (size_t i = 0; i < rows_.size(); ++i) {
    id_to_index_[rows_[i]] = i;
  }
  rwlock_->UNLock();
}

173 174
void SelectedRowsImpl::Get(const phi::DenseTensor& ids,
                           phi::DenseTensor* value,
J
Jiabin Yang 已提交
175 176
                           bool auto_grown,
                           bool is_test) {
177 178 179 180 181 182 183 184 185 186 187
  PADDLE_ENFORCE_EQ(value->IsInitialized(),
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "The value tensor is not initialized."));
  if (ids.numel() == 0) {
    VLOG(3) << "keys is empty, please check data!";
  } else {
    int64_t value_width = value_->numel() / value_->dims()[0];
    PADDLE_ENFORCE_EQ(
        value_width,
        value->numel() / value->dims()[0],
188
        phi::errors::InvalidArgument(
189 190 191 192 193 194 195 196 197 198
            "Output tensor should have the same shape with table "
            "except the first dimmension, excepted value width not counting "
            "the first dimension is %d, actual value width is %d.",
            value_width,
            value->numel() / value->dims()[0]));
    for (int i = 0; i < ids.numel(); ++i) {
      auto id = ids.data<int64_t>()[i];
      int64_t index = AutoGrownIndex(id, auto_grown, is_test);
      if (index < 0) {
        VLOG(5) << "id " << id << " not in the table, return 0";
199
        phi::VisitDataType(
200
            value_->dtype(),
201 202
            TensorFillVisitor(value, i * value_width, value_width, 0.0));
      } else {
203 204 205 206 207 208
        phi::VisitDataType(value_->dtype(),
                           TensorCopyVisitor(value,
                                             i * value_width,
                                             *value_.get(),
                                             index * value_width,
                                             value_width));
209 210 211 212
      }
    }
  }
}
213
}  // namespace phi