op_compat.yaml 19.8 KB
Newer Older
1
- op : abs
2 3 4 5
  backward : abs_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]

6 7 8 9 10
- op : acosh
  backward : acosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

11 12 13 14 15 16
- op : add (elementwise_add)
  backward : add_grad (elementwise_add_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

17
- op : addmm
18 19 20 21
  backward : addmm_grad
  extra :
    attrs : [bool use_mkldnn = false]

22
- op : affine_grid
23 24 25 26
  backward : affine_grid_grad
  extra :
    attrs : [bool use_cudnn = true]

27
- op : angle
28 29 30
  backward : angle_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]
31

32
- op : asinh
33 34 35 36
  backward : asinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

37
- op : atan2
38
  inputs :
39
    {x : X1, y : X2}
40 41 42
  outputs :
    out : Out

43
- op : atanh
44 45 46 47
  backward : atanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

48
- op : batch_norm
49 50 51 52
  backward : batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

53
- op : bernoulli
54 55 56 57 58
  inputs :
    x : X
  outputs :
    out : Out

59
- op : bicubic_interp (bicubic_interp_v2)
60 61 62 63
  backward : bicubic_interp_grad (bicubic_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

64
- op : bilinear_interp (bilinear_interp_v2)
65 66 67 68
  backward : bilinear_interp_grad (bilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

69
- op : ceil
70 71 72 73
  backward : ceil_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

74
- op : cholesky
75 76 77 78 79
  inputs :
    x : X
  outputs :
    out : Out

80
- op : cholesky_solve
81 82 83 84 85
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

86
- op : clip
87 88 89 90
  backward : clip_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

91
- op : concat
92 93 94 95
  backward : concat_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32"]

96 97 98 99 100
- op : conditional_block
  backward : conditional_block_grad
  extra :
    attrs : ['str[] skip_eager_deletion_vars = {}']

101
- op : conv2d
102
  backward : conv2d_grad
103
  extra :
104
    attrs : [bool is_test = false, bool use_cudnn = true, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
105
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
106
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
107 108
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
109
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]
110

111
- op : conv2d_fusion
F
Feiyu Chan 已提交
112
  extra :
113
    attrs : [bool is_test = false, bool use_cudnn = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
F
Feiyu Chan 已提交
114
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
115
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
F
Feiyu Chan 已提交
116 117
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
118 119
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

120
- op : conv2d_transpose
121 122 123 124 125 126 127
  backward : conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]

128
- op : conv3d
129 130 131 132 133 134 135
  backward : conv3d_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             bool use_addto = false, bool fuse_residual_connection = false, bool force_fp32_output = false,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

136
- op : conv3d_transpose
137 138 139
  backward : conv3d_transpose_grad
  extra :
    attrs : [bool use_cudnn = true, bool use_mkldnn = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
F
Feiyu Chan 已提交
140

141
- op : cos
142 143 144 145
  backward : cos_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

146
- op : cosh
147 148 149 150
  backward : cosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

151
- op : cross
152 153
  inputs :
    {x : X, y : Y}
154 155 156 157 158
  attrs :
    axis : dim
  outputs :
    out : Out

159
- op : data_norm
160 161 162 163
  backward : data_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

164
- op : depthwise_conv2d
165 166
  backward : depthwise_conv2d_grad
  extra :
167
    attrs : [bool is_test = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
168 169 170 171
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
172 173
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

174
- op : depthwise_conv2d_transpose
175 176 177 178 179 180
  backward : depthwise_conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = false, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
181

182
- op : diag (diag_v2)
183
  backward : diag_grad (diag_v2_grad)
184 185 186 187 188
  inputs :
    x : X
  outputs :
    out : Out

189
- op : diagonal
190 191 192 193 194
  inputs :
    x : Input
  outputs :
    out : Out

195
- op : digamma
196 197 198 199 200
  inputs :
    x : X
  outputs :
    out : Out

201
- op : dist
202 203 204 205 206
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

207 208 209 210 211 212
- op : divide (elementwise_div)
  backward : divide_grad (elementwise_div)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

213
- op : dot
214 215 216 217 218
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

219
- op : dropout
220 221 222 223
  backward : dropout_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

224
- op : dropout_nd
225 226 227 228
  backward : dropout_nd_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

229 230 231 232 233 234
- op : elementwise_pow
  backward : elementwise_pow_grad
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

235
- op : elu
236 237 238 239
  backward : elu_grad
  extra :
    attrs : [bool use_mkldnn = false]

240 241 242 243 244 245 246
- op : embedding (lookup_table_v2)
  backward : embedding_grad (lookup_table_v2_grad)
  extra :
    attrs : [bool is_sparse = false, bool is_distributed = false, bool remote_prefetch = false,
             int trainer_id = 0, int slot = 0, 'int64_t[] height_sections = {}', 'str[] epmap = {}',
             'str[] table_names = {}']

247
- op : erf
248 249 250 251 252
  inputs :
    x : X
  outputs :
    out : Out

253
- op : erfinv
254 255 256 257 258
  inputs :
    x : X
  outputs :
    out : Out

259
- op : exp
260 261 262 263
  backward : exp_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

264 265 266 267 268
- op : expand (expand_v2)
  backward : expand_grad (expand_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

269
- op : expm1
270 271 272 273
  backward : expm1_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

274
- op : fft_c2c
275 276 277
  inputs: {x: X}
  outputs: {out: Out}

278
- op : fft_c2r
279 280 281
  inputs: {x: X}
  outputs: {out: Out}

282
- op : fft_r2c
283 284 285
  inputs: {x: X}
  outputs: {out: Out}

286 287 288 289 290
- op : floor
  backward : floor_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
- op : floor_divide (elementwise_floordiv)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmax (elementwise_fmax)
  backward : fmax_grad (elementwise_fmax_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmin (elementwise_fmin)
  backward : fmin_grad (elementwise_fmin_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

308
- op : frobenius_norm
309 310 311 312
  backward : frobenius_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

313 314 315 316 317 318 319 320 321
- op : full (fill_constant)
  extra :
    attrs : [bool use_mkldnn = false]

- op : gather
  backward : gather_grad
  extra :
    attrs : [bool overwrite = true]

322
- op : gelu
323 324 325 326
  backward : gelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool use_cudnn = false]

327 328 329 330 331
- op : grad_add
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

332
- op : grid_sampler
333 334 335 336
  backward : grid_sampler_grad
  extra :
    attrs : [bool use_cudnn = true]

337
- op : gru
338 339 340 341
  backward : gru_grad
  extra :
    attrs : [bool is_test = false]

342 343 344 345 346
- op : hard_swish
  backward : hard_swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

347 348 349 350 351 352
- op : heaviside (elementwise_heaviside)
  backward : heaviside_grad (elementwise_heaviside_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

353
- op : inplace_abn
354 355 356 357
  backward : inplace_abn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

358
- op : layer_norm
359 360 361 362
  backward : layer_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

363
- op : leaky_relu
364 365 366 367
  backward : leaky_relu_grad
  extra :
    attrs : [bool use_mkldnn = false]

368
- op : lgamma
369 370 371 372 373
  inputs :
    x : X
  outputs :
    out : Out

374
- op : linear_interp (linear_interp_v2)
375 376 377 378
  backward : linear_interp_grad (linear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

379
- op : log
380 381 382 383
  backward : log_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

384
- op : log10
385 386 387 388
  backward : log10_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

389
- op : log1p
390 391 392 393
  backward : log1p_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

394
- op : log2
395 396 397 398
  backward : log2_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

399
- op : log_softmax
400 401 402 403
  backward : log_softmax_grad
  extra :
    attrs : [bool use_mkldnn = false]

404
- op : logsigmoid
405 406 407 408
  backward : logsigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

409
- op : lrn
410 411 412 413
  backward : lrn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool is_test = false]

414
- op : matmul (matmul_v2)
415 416 417 418
  backward : matmul_grad (matmul_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, 'int[] fused_reshape_Out = {}', 'int[] fused_transpose_Out = {}',
             str mkldnn_data_type = "float32", 'int[] fused_reshape_X = {}', 'int[] fused_reshape_Y = {}',
419
             'int[] fused_transpose_X = {}', 'int[] fused_transpose_Y = {}']
420

421 422 423 424 425 426
- op : matmul_with_flatten (mul)
  backward : matmul_with_flatten_grad (mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, float scale_x = 1.0f, 'float[] scale_y = {1.0f}',
             float scale_out = 1.0f, bool force_fp32_output = false]

427 428 429 430 431 432 433 434 435 436 437 438
- op : maximum (elementwise_max)
  backward : maximum_grad (elementwise_max_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : maximum (elementwise_min)
  backward : maximum_grad (elementwise_min_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

439 440 441 442 443
- op : mish
  backward : mish_grad
  extra :
    attrs : [bool use_mkldnn = false]

444 445 446 447 448 449
- op : multiply (elementwise_mul)
  backward : multiply_grad (elementwise_mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

450
- op : mv
451 452 453 454 455
  inputs :
    {x : X, vec : Vec}
  outputs :
    out : Out

456
- op : nearest_interp (nearest_interp_v2)
457 458 459 460
  backward : nearest_interp_grad (nearest_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

461
- op : pad2d
462 463 464 465
  backward : pad2d_grad
  extra :
    attrs : [bool use_mkldnn = false]

466
- op : pad3d
467 468 469 470
  backward : pad3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

471
- op : partial_sum
472 473 474 475
  backward : partial_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

476
- op : poisson
477 478 479 480 481
  inputs :
    x : X
  outputs :
    out : Out

482 483 484 485 486 487 488 489 490 491 492
- op : pool2d
  backward : pool2d_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false,
              str mkldnn_data_type = "float32", bool is_test = false]

- op : pool3d
  backward : pool3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

493
- op : prelu
494 495 496 497
  backward : prelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

498
- op : reciprocal
499 500 501 502
  backward : reciprocal_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

503
- op : reduce_all
504 505 506
  extra :
    attrs : [bool use_mkldnn = false]

507
- op : reduce_amax
508 509 510 511
  backward : reduce_amax_grad
  extra :
    attrs : [bool use_mkldnn = false]

512
- op : reduce_amin
513 514 515 516
  backward : reduce_amin_grad
  extra :
    attrs : [bool use_mkldnn = false]

517
- op : reduce_any
518 519 520
  extra :
    attrs : [bool use_mkldnn = false]

521
- op : reduce_max
522 523 524 525
  backward : reduce_max_grad
  extra :
    attrs : [bool use_mkldnn = false]

526
- op : reduce_mean
527 528 529 530
  backward : reduce_mean_grad
  extra :
    attrs : [bool use_mkldnn = false]

531
- op : reduce_min
532 533 534 535
  backward : reduce_min_grad
  extra :
    attrs : [bool use_mkldnn = false]

536
- op : reduce_prod
537 538 539 540
  backward : reduce_prod_grad
  extra :
    attrs : [bool use_mkldnn = false]

541
- op : reduce_sum
542 543 544 545
  backward : reduce_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

546
- op : relu
547 548 549 550
  backward : relu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

551
- op : relu6
552 553 554 555
  backward : relu6_grad
  extra :
    attrs : [bool use_mkldnn = false]

556 557 558 559 560
- op : remainder (elementwise_mod)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

561
- op : renorm
562 563 564 565
  backward : renorm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

566 567 568 569 570 571
- op : rnn
  backward : rnn_grad
  extra :
    attrs : [bool is_test = false]

- op : round
572
  backward : round_grad
573
  extra :
574 575
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

576
- op : rsqrt
577 578 579
  backward : rsqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
580

581 582 583 584
- op : scale
  extra :
    attrs : [bool use_mkldnn = false]

585
- op : seed
586 587 588
  extra :
    attrs : [bool deterministic = false, str rng_name = "", bool force_cpu = false]

589
- op : shape
590 591 592
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

593
- op : shuffle_channel
594 595 596 597
  backward : shuffle_channel_grad
  extra :
    attrs : [bool use_mkldnn = false]

598
- op : sigmoid
599 600 601 602
  backward : sigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

603
- op : silu
604 605 606 607
  backward : silu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

608
- op : sin
609 610 611 612
  backward : sin_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

613
- op : sinh
614 615 616 617
  backward : sinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

618
- op : slice
619 620 621 622
  backward : slice_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

623
- op : softmax
624 625 626
  backward : softmax_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]
627

628
- op : softplus
629
  backward : softplus_grad
630
  extra :
631 632 633
    attrs : [bool use_mkldnn = false, bool use_cudnn = false, str fuse_activation_type = "", float fuse_activation_alpha = 0.0f,
             float fuse_activation_beta = 0.0f, float fuse_activation_scale = 1.0f]

634
- op : softsign
635 636 637
  backward : softsign_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
638

639
- op : solve
640 641 642 643 644
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

645
- op : sqrt
646 647 648 649
  backward : sqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

650
- op : square
651 652 653 654
  backward : square_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

655
- op : squeeze (squeeze2)
656 657 658 659
  backward : squeeze_grad (squeeze2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

660
- op : stack
661 662 663 664
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

665 666 667 668 669
- op : stack
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

670 671 672 673 674 675
- op : subtract (elementwise_sub)
  backward : subtract_grad (elementwise_sub_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

676
- op : swish
677 678 679 680
  backward : swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

681
- op : sync_batch_norm
682 683 684 685
  backward : sync_batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

686
- op : tan
687 688 689 690
  backward : tan_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

691
- op : tanh
692 693 694 695
  backward : tanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

696
- op : tanh_shrink
697 698 699 700
  backward : tanh_shrink_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

701
- op : trace
702 703 704 705
  inputs :
    x : Input
  outputs :
    out : Out
706

707 708 709 710 711 712
- op : transpose (transpose2)
  backward : transpose_grad (transpose2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str data_format = "AnyLayout", bool use_quantizer = false,
              str mkldnn_data_type = "float32"]

713
- op : trilinear_interp (trilinear_interp_v2)
714 715 716 717
  backward : trilinear_interp_grad (trilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

718
- op : trunc
719 720 721 722
  inputs :
    x : X
  outputs :
    out : Out
723

724 725
- op : while
  backward : while_grad
726
  extra :
727
    attrs : ['str[] skip_eager_deletion_vars = {}']