pool_mkldnn_op.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
36 37 38
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
39 40
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
41
    const auto& mkldnn_engine = dev_ctx.GetEngine();
42 43 44 45

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

46 47 48
    platform::PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, mkldnn_engine,
                                              ctx.GetPlace(), input, output,
                                              ctx.OutputName("Out"));
49 50 51 52

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
53
    auto pool_p = handler.AcquireForwardPrimitive();
54

A
Adam 已提交
55
    mkldnn::stream astream(dev_ctx.GetEngine());
56 57
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
58
      // Training
A
Adam 已提交
59 60 61 62
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory},
                                {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
63 64
    } else {
      // Inference
A
Adam 已提交
65 66
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory}});
67
    }
A
Adam 已提交
68
    astream.wait();
69 70

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
71
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
72 73 74 75 76 77 78
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
79 80 81
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
82 83 84 85
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

86 87 88 89 90 91
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));
92

93
    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
94 95
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
A
Adam 已提交
96
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
97 98
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));
99 100 101

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
102 103
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
104

105
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
A
Adam 已提交
106 107 108 109 110 111 112 113 114 115

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

116 117
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
118

119 120 121 122 123 124
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
        framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
125 126
    }

127 128 129
    UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
                  strides, ksize);

130 131 132
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

133 134
    std::vector<mkldnn::primitive> pipeline;

A
Adam 已提交
135 136
    auto diff_src_tz = paddle::framework::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
137

138 139
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
140
    const std::string key = platform::CreateKey(
141
        diff_src_tz, pooling_type, ksize, strides, paddings,
H
hong 已提交
142
        memory::data_type::f32, in_x->format(), ctx.InputName("Out"));
143

144 145 146 147
    platform::PoolingMKLDNNHandler<T> handler(
        diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
        paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
H
hong 已提交
148
        ctx.GetPlace(), ctx.InputName("Out"), ctx.Attr<bool>("exclusive"));
149 150 151 152

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
153
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
154

A
Adam 已提交
155
    mkldnn::stream astream(dev_ctx.GetEngine());
156 157
    if (pooling_type == "max") {
      // Max - pooling needs Workspace
A
Adam 已提交
158 159 160 161
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                                    {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
162 163
    } else {
      // Average Pooling
A
Adam 已提交
164 165
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory}});
166
    }
A
Adam 已提交
167
    astream.wait();
168 169

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
170
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
171 172 173 174 175 176
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

177 178
namespace ops = paddle::operators;

179
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
180 181 182 183
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

184
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
185
                   ops::PoolMKLDNNGradOpKernel<float>);