trt_plugin.cc 4.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
20
namespace plugin {
N
nhzlx 已提交
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
inline void Seria(void*& buffer,  // NOLINT
                  const std::vector<nvinfer1::Dims>& input_dims,
                  size_t max_batch_size, nvinfer1::DataType data_type,
                  nvinfer1::PluginFormat data_format, bool with_fp16) {
  SerializeValue(&buffer, input_dims);
  SerializeValue(&buffer, max_batch_size);
  SerializeValue(&buffer, data_type);
  SerializeValue(&buffer, data_format);
  SerializeValue(&buffer, with_fp16);
}

inline void Deseria(void const*& serial_data, size_t& serial_length,  // NOLINT
                    std::vector<nvinfer1::Dims>* input_dims,
                    size_t* max_batch_size, nvinfer1::DataType* data_type,
                    nvinfer1::PluginFormat* data_format, bool* with_fp16) {
  DeserializeValue(&serial_data, &serial_length, input_dims);
  DeserializeValue(&serial_data, &serial_length, max_batch_size);
  DeserializeValue(&serial_data, &serial_length, data_type);
  DeserializeValue(&serial_data, &serial_length, data_format);
  DeserializeValue(&serial_data, &serial_length, with_fp16);
}

inline size_t SeriaSize(const std::vector<nvinfer1::Dims>& input_dims,
                        size_t max_batch_size, nvinfer1::DataType data_type,
                        nvinfer1::PluginFormat data_format, bool with_fp16) {
  return (SerializedSize(input_dims) + SerializedSize(max_batch_size) +
          SerializedSize(data_type) + SerializedSize(data_format) +
          SerializedSize(with_fp16));
}

N
nhzlx 已提交
52
void PluginTensorRT::serializeBase(void*& buffer) {
53 54
  Seria(buffer, input_dims_, max_batch_size_, data_type_, data_format_,
        with_fp16_);
N
nhzlx 已提交
55 56
}

57 58
void PluginTensorRT::deserializeBase(void const*& serial_data,
                                     size_t& serial_length) {
59 60
  Deseria(serial_data, serial_length, &input_dims_, &max_batch_size_,
          &data_type_, &data_format_, &with_fp16_);
N
nhzlx 已提交
61 62 63
}

size_t PluginTensorRT::getBaseSerializationSize() {
64 65
  return SeriaSize(input_dims_, max_batch_size_, data_type_, data_format_,
                   with_fp16_);
N
nhzlx 已提交
66 67 68 69
}

bool PluginTensorRT::supportsFormat(nvinfer1::DataType type,
                                    nvinfer1::PluginFormat format) const {
70
  return ((type == nvinfer1::DataType::kFLOAT) &&
71
          (format == nvinfer1::PluginFormat::kLINEAR));
N
nhzlx 已提交
72 73
}

74 75 76 77
void PluginTensorRT::configureWithFormat(
    const nvinfer1::Dims* input_dims, int num_inputs,
    const nvinfer1::Dims* output_dims, int num_outputs, nvinfer1::DataType type,
    nvinfer1::PluginFormat format, int max_batch_size) {
N
nhzlx 已提交
78 79
  data_type_ = type;
  data_format_ = format;
80 81
  input_dims_.assign(input_dims, input_dims + num_inputs);
  max_batch_size_ = max_batch_size;
N
nhzlx 已提交
82 83
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void PluginTensorRTV2Ext::serializeBase(void*& buffer) const {
  Seria(buffer, input_dims_, max_batch_size_, data_type_, data_format_,
        with_fp16_);
}

void PluginTensorRTV2Ext::deserializeBase(void const*& serial_data,
                                          size_t& serial_length) {
  Deseria(serial_data, serial_length, &input_dims_, &max_batch_size_,
          &data_type_, &data_format_, &with_fp16_);
}

size_t PluginTensorRTV2Ext::getBaseSerializationSize() const {
  return SeriaSize(input_dims_, max_batch_size_, data_type_, data_format_,
                   with_fp16_);
}

void PluginTensorRTV2Ext::configurePlugin(
    const nvinfer1::Dims* input_dims, int32_t nb_inputs,
    const nvinfer1::Dims* output_dims, int32_t nb_outputs,
    const nvinfer1::DataType* input_types,
    const nvinfer1::DataType* output_types, const bool* input_is_broadcast,
    const bool* output_is_broadcast, nvinfer1::PluginFormat float_format,
    int32_t max_batch_size) {
  input_dims_.assign(input_dims, input_dims + nb_inputs);
  max_batch_size_ = max_batch_size;
  data_format_ = float_format;
  data_type_ = input_types[0];
}

113
}  // namespace plugin
N
nhzlx 已提交
114 115 116
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle