infer_shape_context.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include <vector>

#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/fluid/eager/legacy/type_def.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/framework/var_type.h"
namespace egr {
28
namespace legacy {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

class EagerInferShapeContext : public paddle::framework::InferShapeContext {
  using DDim = paddle::framework::DDim;

 public:
  EagerInferShapeContext(const NameTensorMap* in, const NameTensorMap* out,
                         const paddle::framework::AttributeMap* attr,
                         const paddle::framework::AttributeMap* default_attr,
                         const std::string op_type)
      : tensor_in_(in),
        tensor_out_(out),
        attrs_(attr),
        default_attrs_(default_attr),
        op_type_(op_type) {}

  bool HasInput(const std::string& name) const override {
    // has only one input
    auto it = tensor_in_->find(name);

    if (it == tensor_in_->end()) {
      return false;
    }
    const auto& in = it->second;
    if (in.size() == 0) return false;
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        paddle::platform::errors::PreconditionNotMet(
            "Input %s should not have more than one inputs", name));
    return in[0] != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    // has only one output
    auto it = tensor_out_->find(name);
    if (it == tensor_out_->end()) {
      return false;
    }
    const auto& out = it->second;
    if (out.size() == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        paddle::platform::errors::PreconditionNotMet(
            "Output %s should not have more than one outputs", name));
    return out[0] != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto it = tensor_in_->find(name);
    if (it == tensor_in_->end() || it->second.empty()) {
      return false;
    }
    for (auto& input : it->second) {
      if (input == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto it = tensor_out_->find(name);
    if (it == tensor_out_->end() || it->second.empty()) {
      return false;
    }
    for (auto& output : it->second) {
      if (output == nullptr) {
        return false;
      }
    }
    return true;
  }

  paddle::framework::AttrReader Attrs() const override {
    return paddle::framework::AttrReader(*attrs_, *default_attrs_);
  }

  std::vector<std::string> Inputs(const std::string& name) const override {
    std::vector<std::string> vec_res;
    auto it = tensor_in_->find(name);
    PADDLE_ENFORCE_NE(
        it, tensor_in_->end(),
        paddle::platform::errors::NotFound("can not find [%s] in input", name));

    vec_res.reserve(it->second.size());
    for (auto& var : it->second) {
      if (var) {
        vec_res.push_back(var->name());
      } else {
        vec_res.push_back(paddle::framework::kEmptyVarName);
      }
    }

    return vec_res;
  }

  std::vector<std::string> Outputs(const std::string& name) const override {
    std::vector<std::string> vec_res;
    auto it = tensor_out_->find(name);
    PADDLE_ENFORCE_NE(it, tensor_out_->end(),
                      paddle::platform::errors::NotFound(
                          "can not find [%s] in output", name));

    vec_res.reserve(it->second.size());
    for (auto& var : it->second) {
      if (var) {
        vec_res.push_back(var->name());
      } else {
        vec_res.push_back(paddle::framework::kEmptyVarName);
      }
    }

    return vec_res;
  }
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_type_).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      paddle::platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_type_, idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_type_).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        paddle::platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_type_, idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
    auto in_it = tensor_in_->find(in);
    auto out_it = tensor_out_->find(out);
    PADDLE_ENFORCE_NE(
        in_it, tensor_in_->end(),
        paddle::platform::errors::NotFound("can not found [%s] in input", in));
    PADDLE_ENFORCE_GT(in_it->second.size(), i,
                      paddle::platform::errors::PreconditionNotMet(
                          "Inputs %s should have %llu argument", in, i));
    PADDLE_ENFORCE_NE(
        out_it, tensor_out_->end(),
        paddle::platform::errors::NotFound("can not found [%s] in input", in));
    PADDLE_ENFORCE_GT(out_it->second.size(), j,
                      paddle::platform::errors::PreconditionNotMet(
                          "Outputs %s should have %llu argument", out, j));

    paddle::framework::Variable* in_var = in_it->second[i]->MutableVar();
    paddle::framework::Variable* out_var = out_it->second[j]->MutableVar();

    PADDLE_ENFORCE_EQ(in_var->Type(), out_var->Type(),
                      paddle::platform::errors::PreconditionNotMet(
                          "The type of %s and %s is not the same.", in, out));

    if (in_var->IsType<paddle::framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<paddle::framework::LoDTensor>();
      auto* out_lod_tensor =
          out_var->GetMutable<paddle::framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      auto& in_sele_rows = in_var->Get<paddle::framework::SelectedRows>();
      auto out_sele_rows =
          out_var->GetMutable<paddle::framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    }
  }

  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    // do nothing
  }
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    // do nothing
  }

  bool IsRuntime() const override { return true; }

  // TODO(paddle-dev): Can this be template?
  std::vector<paddle::framework::InferShapeVarPtr> GetInputVarPtrs(
219
      const std::string& name) const override {
220 221 222 223 224
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "GetInputVarPtrs not support in dygraph runtime context"));
  }

  std::vector<paddle::framework::InferShapeVarPtr> GetOutputVarPtrs(
225
      const std::string& name) const override {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "GetOutputVarPtrs not support in dygraph runtime context"));
  }

  DDim GetInputDim(const std::string& name) const override {
    auto it = tensor_in_->find(name);
    PADDLE_ENFORCE_NE(
        it, tensor_in_->end(),
        paddle::platform::errors::NotFound("can not find [%s] in input", name));
    PADDLE_ENFORCE_EQ(
        it->second.size(), 1UL,
        paddle::platform::errors::PreconditionNotMet(
            "Input(%s) should hold one element, but now it holds %d", name,
            it->second.size()));
    return this->GetDim(it->second[0]->MutableVar());
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    // const std::vector<Variable*>& vars = InputVars(name);
    std::vector<DDim> vec_res;
    auto it = tensor_in_->find(name);
    PADDLE_ENFORCE_NE(it, tensor_in_->end(),
                      paddle::platform::errors::NotFound(
                          "can not find [%s] in output", name));
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      if (it->second[i]) {
        vec_res.emplace_back(GetDim(it->second[i]->MutableVar()));
      } else {
        vec_res.emplace_back();
      }
    }

    return vec_res;
  }

  std::vector<paddle::framework::proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    std::vector<paddle::framework::proto::VarType::Type> vec_res;
    auto it = tensor_in_->find(name);
    PADDLE_ENFORCE_NE(
        it, tensor_in_->end(),
        paddle::platform::errors::NotFound("can not find [%s] in input", name));
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      if (it->second[i]) {
        vec_res.emplace_back(
            paddle::framework::ToVarType(it->second[i]->MutableVar()->Type()));
      } else {
        vec_res.emplace_back();
      }
    }
    return vec_res;
  }

  std::vector<paddle::framework::proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    std::vector<paddle::framework::proto::VarType::Type> vec_res;
    auto it = tensor_out_->find(name);
    PADDLE_ENFORCE_NE(it, tensor_out_->end(),
                      paddle::platform::errors::NotFound(
                          "can not find [%s] in output", name));
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      if (it->second[i]) {
        vec_res.emplace_back(
            paddle::framework::ToVarType(it->second[i]->MutableVar()->Type()));
      } else {
        vec_res.emplace_back(
            static_cast<paddle::framework::proto::VarType::Type>(-1));
      }
    }
    return vec_res;
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto it = tensor_out_->find(name);
    PADDLE_ENFORCE_NE(it, tensor_out_->end(),
                      paddle::platform::errors::NotFound(
                          "can not find [%s] in output", name));

    if (it->second[0]) {
      SetDim(it->second[0]->MutableVar(), dim);
    }
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto it = tensor_out_->find(name);
    PADDLE_ENFORCE_NE(it, tensor_out_->end(),
                      paddle::platform::errors::NotFound(
                          "can not find [%s] in output", name));

    PADDLE_ENFORCE_EQ(dims.size(), it->second.size(),
                      paddle::platform::errors::InvalidArgument(
                          "The number of dims is expected to be equal to the "
                          "number of Outputs(%s). But receieved: the number of "
                          "dims = %d, the number of Outputs(%s) = %d.",
                          name, dims.size(), name, it->second.size()));

    for (size_t i = 0; i < dims.size(); ++i) {
      if (it->second[i]) {
        SetDim(it->second[i]->MutableVar(), dims[i]);
      }
    }
  }

  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "GetLoDLevel function not support in dygraph mode"));
  }

  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "SetLoDLevel function not support in dygraph mode"));
  }

 protected:
  DDim GetDim(paddle::framework::Variable* var) const {
    PADDLE_ENFORCE_NOT_NULL(var, paddle::platform::errors::PreconditionNotMet(
                                     "Input variable should not be null"));
    if (var->IsType<paddle::framework::LoDTensor>()) {
      return var->Get<paddle::framework::LoDTensor>().dims();
    } else if (var->IsType<paddle::framework::SelectedRows>()) {
      return var->Get<paddle::framework::SelectedRows>().GetCompleteDims();
    } else {
      PADDLE_THROW(paddle::platform::errors::PermissionDenied(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
          "type_id is xx."));
    }
  }

  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "GetRepeatedDims not support in dygraph runtime"));
  }

  void SetDim(paddle::framework::Variable* var, const DDim& dim) {
    if (var->IsType<paddle::framework::LoDTensor>()) {
      var->GetMutable<paddle::framework::LoDTensor>()->Resize(dim);
    } else if (var->IsType<paddle::framework::SelectedRows>()) {
      var->GetMutable<paddle::framework::SelectedRows>()->set_height(dim[0]);
    } else {
      PADDLE_THROW(paddle::platform::errors::PermissionDenied(
          "Variable type_id %s, expect LoDTensor/SelectedRows."));
    }
  }

  void SetDims(const std::vector<paddle::framework::Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(
        length, dims.size(),
        paddle::platform::errors::PreconditionNotMet(
            "Vars number [%d] should be equal with dims number [%d]", length,
            dims.size()));
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
    }
  }

  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "SetRepeatedDims not support in dygraph runtime"));
  }

 private:
  const NameTensorMap* tensor_in_;
  const NameTensorMap* tensor_out_;
  const paddle::framework::AttributeMap* attrs_;
  const paddle::framework::AttributeMap* default_attrs_;
  const std::string op_type_;
};

405
}  // namespace legacy
406
}  // namespace egr