adam_op_xpu.cc 9.5 KB
Newer Older
Y
yinhaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/optimizers/adam_op.h"
16
#include "gflags/gflags.h"
Y
yinhaofeng 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

#ifdef PADDLE_WITH_XPU
template <typename DeviceContext, typename T>
class AdamOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong type,Expected Var(%s)'s "
                          "type is LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
    using paddle::framework::LoDTensor;

    auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
                                  "Param", "Adam");
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
    auto& mom1 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment1"), "Input",
                                 "Moment1", "Adam");
    auto& mom2 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment2"), "Input",
                                 "Moment2", "Adam");
    auto& lr = GET_DATA_SAFELY(ctx.Input<LoDTensor>("LearningRate"), "Input",
                               "LearningRate", "Adam");
    auto& beta1_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta1Pow"), "Input",
                                      "Beta1Pow", "Adam");
    auto& beta2_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta2Pow"), "Input",
                                      "Beta2Pow", "Adam");

    auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
                                      "Output", "ParamOut", "Adam");
    auto& mom1_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment1Out"),
                                     "Output", "Moment1Out", "Adam");
    auto& mom2_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment2Out"),
                                     "Output", "Moment2Out", "Adam");

    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    bool skip_update = false;
    if (ctx.HasInput("SkipUpdate")) {
      auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
      PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(SkipUpdate) size must be 1, but get %d",
                            skip_update_tensor->numel()));
      std::vector<bool> skip_update_vec;
      TensorToVector(*skip_update_tensor, ctx.device_context(),
                     &skip_update_vec);
      skip_update = skip_update_vec[0];
    }
    // skip_update=true, just copy input to output, and TensorCopy will call
    // mutable_data
    if (skip_update) {
      VLOG(4) << "Adam skip update";
      framework::TensorCopy(
          param, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &param_out);
      framework::TensorCopy(
          mom1, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &mom1_out);
      framework::TensorCopy(
          mom2, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &mom2_out);
      framework::TensorCopy(
89
          beta1_pow, beta1_pow.place(),
90 91 92
          ctx.template device_context<platform::DeviceContext>(),
          beta1_pow_out);
      framework::TensorCopy(
93
          beta2_pow, beta2_pow.place(),
94 95 96 97 98
          ctx.template device_context<platform::DeviceContext>(),
          beta2_pow_out);
      return;
    }

Y
yinhaofeng 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong size, Expected beta1 pow "
                          "output size is 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong size, Expected beta2 pow "
                          "output size is 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));
112

113 114 115
    bool use_global_beta_pow = ctx.Attr<bool>("use_global_beta_pow");
    VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

116
    float beta1 = static_cast<float>(ctx.Attr<float>("beta1"));
Y
yinhaofeng 已提交
117 118
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
119
      beta1 = static_cast<float>(GetAttrFromTensor(beta1_tensor));
Y
yinhaofeng 已提交
120
    }
121
    float beta2 = static_cast<float>(ctx.Attr<float>("beta2"));
Y
yinhaofeng 已提交
122 123
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
124
      beta2 = static_cast<float>(GetAttrFromTensor(beta2_tensor));
Y
yinhaofeng 已提交
125
    }
126
    float epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
127 128
    if (ctx.HasInput("EpsilonTensor")) {
      auto* epsilon_tensor = ctx.Input<framework::Tensor>("EpsilonTensor");
129
      epsilon = static_cast<float>(GetAttrFromTensor(epsilon_tensor));
130
    }
Y
yinhaofeng 已提交
131 132 133 134
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Grad"), "Input",
                                   "Grad", "Adam");
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
135 136
      const float* beta1_pow_ptr = beta1_pow.template data<float>();
      const float* beta2_pow_ptr = beta2_pow.template data<float>();
137 138 139 140 141 142 143
      Tensor xpu_beta1_pow;
      Tensor xpu_beta2_pow;
      if (beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
        TensorCopy(beta1_pow, ctx.GetPlace(), dev_ctx, &xpu_beta1_pow);
        TensorCopy(beta2_pow, ctx.GetPlace(), dev_ctx, &xpu_beta2_pow);
        dev_ctx.Wait();
144 145
        beta1_pow_ptr = xpu_beta1_pow.template data<float>();
        beta2_pow_ptr = xpu_beta2_pow.template data<float>();
146
      }
147 148 149 150 151 152 153 154 155

      int r = xpu::adam(dev_ctx.x_context(), grad.template data<T>(),
                        mom1.template data<T>(), mom2.template data<T>(),
                        param.template data<float>(), beta1_pow_ptr,
                        beta2_pow_ptr, lr.template data<float>(),
                        mom1_out.template mutable_data<float>(ctx.GetPlace()),
                        mom2_out.template mutable_data<float>(ctx.GetPlace()),
                        param_out.template mutable_data<float>(ctx.GetPlace()),
                        beta1, beta2, epsilon, param.numel());
156 157 158 159
      if (!use_global_beta_pow) {
        // update in cpu and then copy to xpu
        if (beta1_pow.place() == platform::CPUPlace() &&
            beta2_pow.place() == platform::CPUPlace()) {
160 161
          const float* beta1_pow_p = beta1_pow.template data<float>();
          beta1_pow_out->mutable_data<float>(platform::CPUPlace())[0] =
162
              beta1 * beta1_pow_p[0];
163 164
          const float* beta2_pow_p = beta2_pow.template data<float>();
          beta2_pow_out->mutable_data<float>(platform::CPUPlace())[0] =
165
              beta2 * beta2_pow_p[0];
166
          xpu_wait(dev_ctx.x_context()->xpu_stream);
167
        } else {
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          float* beta1_pow_out_p =
              beta1_pow_out->mutable_data<float>(ctx.GetPlace());
          float* beta2_pow_out_p =
              beta2_pow_out->mutable_data<float>(ctx.GetPlace());
          int r =
              xpu::scale(dev_ctx.x_context(), beta1_pow_ptr, beta1_pow_out_p,
                         beta1_pow.numel(), false, beta1, 0.0f);
          PADDLE_ENFORCE_EQ(
              r, xpu::SUCCESS,
              platform::errors::External(
                  "XPU kernel scale occur error in adamw error code ", r,
                  XPUAPIErrorMsg[r]));
          r = xpu::scale(dev_ctx.x_context(), beta2_pow_ptr, beta2_pow_out_p,
                         beta2_pow.numel(), false, beta2, 0.0f);
          PADDLE_ENFORCE_EQ(
              r, xpu::SUCCESS,
              platform::errors::External(
                  "XPU kernel scale occur error in adamw error code ", r,
                  XPUAPIErrorMsg[r]));
187 188 189 190 191 192 193
        }

        PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
                          platform::errors::External(
                              "XPU API return wrong value[%d], please check "
                              "where Baidu Kunlun Card is properly installed.",
                              r));
194
      }
Y
yinhaofeng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    } else {
      PADDLE_ENFORCE_EQ(1, 2, platform::errors::InvalidArgument(
                                  "Variable type not supported by adam_op"));
    }
  }
};
#endif

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    adam, ops::AdamOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif