split_op.cc 4.3 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/split_op.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {
using framework::Tensor;

class SplitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
27 28 29 30 31 32 33 34 35 36
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    auto in_dims = ctx->GetInputDim("X");
    auto outs_names = ctx->Outputs("Out");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
    size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
    std::vector<int> sections = static_cast<std::vector<int>>(
        ctx->Attrs().Get<std::vector<int>>("sections"));
    const size_t outs_number = outs_names.size();
    std::vector<framework::DDim> outs_dims;
    outs_dims.reserve(outs_number);
Y
Yancey 已提交
37 38

    if (num > 0) {
Q
Qiao Longfei 已提交
39
      int64_t in_axis_dim = in_dims[axis];
Y
Yancey 已提交
40 41 42 43
      PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
                        "tensor split does not result"
                        " in an equal division");
      size_t out_axis_dim = in_axis_dim / num;
Q
Qiao Longfei 已提交
44 45
      for (size_t i = 0; i < outs_number; ++i) {
        auto dim = in_dims;
Y
Yancey 已提交
46
        dim[axis] = out_axis_dim;
Q
Qiao Longfei 已提交
47
        outs_dims.push_back(dim);
Y
Yancey 已提交
48 49
      }
    } else if (sections.size() > 0) {
Q
Qiao Longfei 已提交
50
      PADDLE_ENFORCE_EQ(sections.size(), outs_number,
Y
Yancey 已提交
51 52
                        "tensor split sections size"
                        "should be equal to output size.");
Q
Qiao Longfei 已提交
53 54
      for (size_t i = 0; i < outs_number; ++i) {
        auto dim = in_dims;
Y
Yancey 已提交
55
        dim[axis] = sections[i];
Q
Qiao Longfei 已提交
56
        outs_dims.push_back(dim);
Y
Yancey 已提交
57 58 59 60 61
      }
    } else {
      PADDLE_ENFORCE_NOT_NULL(nullptr, "split operator should",
                              " specify indices or sections.");
    }
Q
Qiao Longfei 已提交
62
    ctx->SetOutputsDim("Out", outs_dims);
Y
Yancey 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
};

class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "the input tensor of split operator.");
    AddOutput("Out", "the output tensors of split operator.").AsDuplicable();
    AddComment(R"DOC(
      Split the input tensor into multiple sub-tensors.
      Example:
        Input = [[1,2],
                 [3,4],
                 [5,6]]
        sections = [2,1]
        axis = 0
        Output[0] = [[1,2],
                     [3,4]]
        Output[1] = [[5,6]]

    )DOC");
    AddAttr<std::vector<int>>("sections",
                              "the length for each"
                              "output along with the specify axis.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("num",
                 "number of the sub-tensors, it must evenly divide "
                 "Input.dims()[axis]")
        .SetDefault(0);
    AddAttr<int>("axis", "The axis which the input will be splited on.")
        .SetDefault(0);
  }
};

class SplitOpGrad : public NetOp {
 public:
  SplitOpGrad(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : NetOp(type, inputs, outputs, attrs) {
    auto out_grad = Inputs(framework::GradVarName("Out"));
    auto x_grad = Output(framework::GradVarName("X"));
    AppendOp(framework::OpRegistry::CreateOp("concat", {{"X", out_grad}},
                                             {{"Out", {x_grad}}}, attrs));
    CompleteAddOp(false);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
USE_CPU_ONLY_OP(concat);
REGISTER_OP(split, ops::SplitOp, ops::SplitOpMaker, split_grad,
            ops::SplitOpGrad);
REGISTER_OP_CPU_KERNEL(split,
                       ops::SplitKernel<paddle::platform::CPUPlace, float>);