flatten_op.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
19 20 21 22
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/device_context.h"
23
#include "paddle/pten/include/core.h"
24 25
#include "paddle/pten/kernels/empty_kernel.h"
#include "paddle/pten/kernels/flatten_grad_kernel.h"
26
#include "paddle/pten/kernels/flatten_kernel.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class FlattenKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");

    auto &axes = context.Attr<int>("axis");
    auto x_dims = in->dims();
    auto out_dims = framework::make_ddim(GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
        outer *= in_dims[i];
      } else {
        inner *= in_dims[i];
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }
};

template <typename DeviceContext, typename T>
class FlattenGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
S
ShenLiang 已提交
76 77 78
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    d_x->Resize(in_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &axes = context.Attr<int>("axis");

    auto *in = context.Input<framework::LoDTensor>("X");
    auto x_dims = in->dims();

    auto *out = context.Output<framework::LoDTensor>("Out");

    auto out_dims = framework::make_ddim(
        FlattenKernel<DeviceContext, T>::GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
S
ShenLiang 已提交
117 118 119
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
120 121 122 123
    d_x->Resize(x_dims);
  }
};

124 125 126 127 128 129 130
template <typename DeviceContext, typename T>
class FlattenContiguousRangeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");
    out->mutable_data(context.GetPlace(), in->type());
131 132 133 134 135 136 137 138
    auto &start_axis = context.Attr<int>("start_axis");
    auto &stop_axis = context.Attr<int>("stop_axis");
    auto &dev_ctx = context.device_context<DeviceContext>();

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);
    auto pt_out = paddle::experimental::MakePtenDenseTensor(*out);

    // call new kernel
139 140
    pten::FlattenKernel<T, DeviceContext>(dev_ctx, *pt_x.get(), start_axis,
                                          stop_axis, pt_out.get());
141 142 143 144 145 146 147 148 149 150
  }
};

template <typename DeviceContext, typename T>
class FlattenContiguousRangeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
151
    auto *xshape = ctx.Input<framework::LoDTensor>("XShape");
152 153

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    auto &dev_ctx = ctx.device_context<DeviceContext>();

    auto pt_d_x = paddle::experimental::MakePtenDenseTensor(*d_x);
    auto pt_d_out = paddle::experimental::MakePtenDenseTensor(*d_out);

    // Because the holder of xshape may be nullptr, we can't use
    // MakePtenDenseTensor.
    // So, we create a new DenseTensor to save the dims of xshape.
    pten::DenseTensorMeta xshape_meta{pten::TransToPtenDataType(d_x->type()),
                                      xshape->dims(), d_x->layout()};
    auto pt_xshape =
        pten::Empty<T, DeviceContext>(dev_ctx, std::move(xshape_meta));

    // call new kernel
    pten::FlattenGradKernel<T, DeviceContext>(dev_ctx, *pt_d_out.get(),
                                              pt_xshape, pt_d_x.get());
170 171 172
  }
};

173 174
}  // namespace operators
}  // namespace paddle