elementwise_op.h 16.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
36 37

  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
39
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
40
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
41
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
42 43 44
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

C
chengduo 已提交
45 46 47
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
C
chengduo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        "The input var's type should be LoDTensor, but the received is %s [%s]",
        ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());

    if (ctx->GetInputsVarType("X").front() ==
        framework::proto::VarType::LOD_TENSOR) {
      auto x_dim = ctx->GetInputDim("X");
      auto y_dim = ctx->GetInputDim("Y");
      PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                        "Rank of first input must >= rank of second input.");
    } else if (ctx->GetInputsVarType("X").front() ==
               framework::proto::VarType::SELECTED_ROWS) {
      PADDLE_ENFORCE((ctx->GetInputDim("Y").size() == 1u) &&
                         (ctx->GetInputDim("Y")[0] == 1),
                     "For elementwise_op, if X is Sparse, "
                     "Y must be scalar.");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                   ctx->GetInputsVarType("X").front());
    }
67 68

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
69
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
70
  }
71 72

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
73 74
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
75 76 77 78 79 80 81 82 83 84

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
85 86
};

C
chengduo 已提交
87 88 89 90 91 92
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
93 94 95
  }
};

G
gongweibao 已提交
96 97
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
98
  void Make() final {
99 100 101 102
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
103
    AddAttr<int>("axis",
104 105 106 107
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
108 109
        .SetDefault(-1)
        .EqualGreaterThan(-1);
110 111
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
112
    AddAttr<std::string>(
113 114 115 116 117 118
        "x_data_format",
        "(string, default NCHW) Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
119
    AddAttr<std::string>(
120 121 122 123 124 125
        "y_data_format",
        "(string, default \"\") Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
155 156 157

The equation is:

Y
Yu Yang 已提交
158
$$%s$$
K
kexinzhao 已提交
159

160
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
161
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
162 163

There are two cases for this operator:
164

L
Luo Tao 已提交
165 166
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
167 168

For case 2:
169

170 171
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
172
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
173
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
174
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
175

L
Luo Tao 已提交
176
For example:
177

G
gongweibao 已提交
178
  .. code-block:: text
G
gongweibao 已提交
179

180 181
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
182
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
183 184
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
185
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
186

Y
Yu Yang 已提交
187
)DOC",
188
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
189 190 191 192 193 194 195 196
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
197
  void InferShape(framework::InferShapeContext *ctx) const override {
198
    auto out_grad_name = framework::GradVarName("Out");
Q
Qiao Longfei 已提交
199
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
200
    PADDLE_ENFORCE(ctx->HasInput(out_grad_name),
Q
Qiao Longfei 已提交
201 202
                   "Input(Out@GRAD) should not be null");

203
    auto x_dims = ctx->GetInputDim(out_grad_name);
Q
Qiao Longfei 已提交
204
    auto y_dims = ctx->GetInputDim("Y");
G
gongweibao 已提交
205 206

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
207
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
208

Q
Qiao Longfei 已提交
209 210 211
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
212 213
      ctx->ShareDim(out_grad_name, /*->*/ x_grad_name);
      ctx->ShareLoD(out_grad_name, /*->*/ x_grad_name);
G
gongweibao 已提交
214
    }
Q
Qiao Longfei 已提交
215
    if (ctx->HasOutput(y_grad_name)) {
216 217
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
218 219
    }
  }
220 221

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
222
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
223 224
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
225 226 227 228 229 230 231 232 233 234

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
235
};
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    auto input_data_type = ctx.Input<Tensor>("DOut")->type();

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
289 290 291 292 293 294 295 296 297 298 299 300
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDY"), true,
                        "Input(DDY) should not be null");
      input_data_type = ctx.Input<Tensor>("DDY")->type();
    } else if (ctx.HasInput("DDY") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDX"), true,
                        "Input(DDX) should not be null");
      input_data_type = ctx.Input<Tensor>("DDX")->type();
    } else {
      input_data_type = ctx.Input<Tensor>("DDX")->type();
    }
301 302 303 304 305 306 307 308 309 310 311 312

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

313 314 315 316 317 318 319
// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
320
  void InferShape(framework::InferShapeContext *ctx) const override {
321 322 323 324 325
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
326 327
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
328 329 330 331
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
332 333 334

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
335 336 337 338
    }
  }
};

339 340 341
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
342 343
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
344 345
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
346
      auto &dout =
347 348 349 350 351 352
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

353 354 355 356
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
357
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
358

S
sneaxiy 已提交
359
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseGradNoBufVarsInference, "Y");
360 361
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
                                      "Y", "DOut");
S
sneaxiy 已提交
362

G
gongweibao 已提交
363 364
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
365

366 367 368 369 370 371 372 373
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)                   \
  class kernel_type##GradMaker                                               \
      : public paddle::framework::SingleGradOpDescMaker {                    \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<paddle::framework::OpDesc> Apply() const override {      \
C
chengduo 已提交
374
      auto *op = new paddle::framework::OpDesc();                            \
375 376 377 378 379 380 381 382 383 384 385
      op->SetType(#kernel_type "_grad");                                     \
      op->SetInput("Y", Input("Y"));                                         \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
      op->SetAttrMap(Attrs());                                               \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      op->SetOutput(::paddle::framework::GradVarName("Y"), InputGrad("Y"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
  }

Y
Yu Yang 已提交
386 387 388 389 390 391 392 393 394
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
395
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
396 397
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
398

S
sneaxiy 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation)   \
  class __ElemwiseOp##op_type##Maker__                              \
      : public ::paddle::operators::ElementwiseOpMaker {            \
   protected:                                                       \
    virtual std::string GetName() const { return op_name; }         \
    virtual std::string GetEquation() const { return equation; }    \
  };                                                                \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,    \
                    __ElemwiseOp##op_type##Maker__,                 \
                    ::paddle::operators::ElementwiseOpInferVarType, \
                    op_type##GradMaker,                             \
                    ::paddle::operators::ElementwiseOpInplace);     \
  REGISTER_OPERATOR(op_type##_grad,                                 \
                    ::paddle::operators::ElementwiseOpExplicitGrad, \
                    ::paddle::operators::ElementwiseGradOpInplace,  \
                    ::paddle::operators::ElementwiseGradNoBufVarsInference)
415

416 417 418 419 420
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
                    op_type##GradMaker,                                 \
421
                    ::paddle::operators::ElementwiseOpInplace);