test_weight_normalization.py 4.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy
import collections
18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.initializer import ConstantInitializer
from paddle.fluid.param_attr import WeightNormParamAttr
G
guosheng 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


class TestWeightNormalization(unittest.TestCase):
    batch_size = 3
    hidden_size = 5
    data_desc = (['x', [10], 0], )

    @classmethod
    def setUpClass(cls):
        cls.set_program()

    @classmethod
    def set_program(cls):
        data = fluid.layers.data(
            name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
        out = fluid.layers.fc(input=data,
                              size=cls.hidden_size,
                              param_attr=WeightNormParamAttr(
                                  dim=None,
                                  name='weight_norm_param',
                                  initializer=ConstantInitializer(1.0)),
                              bias_attr=False,
                              act=None)
        loss = fluid.layers.reduce_sum(out)
        fluid.backward.append_backward(loss=loss)
        cls.fetch_list = [
            'weight_norm_param_g', 'weight_norm_param_v',
            'weight_norm_param_g@GRAD'
        ]

    def run_program(self):
        outputs = []
        places = [core.CPUPlace()]
55
        if core.is_compiled_with_cuda():
G
guosheng 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            places.append(core.CUDAPlace(0))
        for place in places:
            self.set_inputs(place)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output = exe.run(fluid.default_main_program(),
                             feed=self.inputs,
                             fetch_list=self.fetch_list,
                             return_numpy=False)
            outputs.append(output)
        self.actual_outputs = outputs

    def set_data(self):
        self.data = collections.OrderedDict()
        for desc in self.data_desc:
            data_name = desc[0]
            data_shape = desc[1]
            data_lod_level = desc[2]
            data_lod = []
            for i in range(data_lod_level):
                lod_level_i = numpy.random.randint(
                    low=1,
                    high=5,
79 80
                    size=self.batch_size
                    if i == 0 else sum(lod_level_i)).tolist()
G
guosheng 已提交
81 82
                data_lod.append(lod_level_i)
            data_value = numpy.random.random(
83
                size=[sum(data_lod[-1]) if data_lod else self.batch_size
G
guosheng 已提交
84 85 86 87 88 89 90 91 92
                      ] + data_shape).astype('float32')
            self.data[data_name] = (data_value, data_lod)

    def set_inputs(self, place):
        self.inputs = {}
        for desc in self.data_desc:
            tensor = fluid.Tensor()
            tensor.set(self.data[desc[0]][0], place)
            if self.data[desc[0]][1]:
93
                tensor.set_recursive_sequence_lengths(self.data[desc[0]][1])
G
guosheng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            self.inputs[desc[0]] = tensor

    def weight_normalize(self):
        v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
                        self.hidden_size))
        g = numpy.linalg.norm(v, axis=None, keepdims=True)
        w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
        x = self.data[self.data_desc[0][0]][0]
        out = numpy.dot(x, w)
        g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
            v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
        return g, v, g_grad

    def test_weight_normalization(self):
        self.set_data()
        self.run_program()
        expect_output = self.weight_normalize()
        for actual_output in self.actual_outputs:
            [
                self.assertTrue(
                    numpy.allclose(
115 116
                        numpy.array(actual), expect, atol=0.001))
                for expect, actual in zip(expect_output, actual_output)
G
guosheng 已提交
117 118 119 120 121
            ]


if __name__ == '__main__':
    unittest.main()