reverse_op.h 3.8 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {
template <typename DeviceContext, typename T, int Rank>
struct ReverseFunctor {
  void operator()(const DeviceContext& context, const framework::LoDTensor& in,
                  framework::LoDTensor* out, const std::vector<int>& axis) {
    Eigen::array<bool, Rank> reverse_axis;
F
fengjiayi 已提交
27 28
    for (int i = 0; i < Rank; ++i) {
      reverse_axis[i] = false;
F
fengjiayi 已提交
29
    }
F
fengjiayi 已提交
30
    for (int a : axis) {
31 32 33 34 35
      if (a >= 0) {
        reverse_axis[a] = true;
      } else {
        reverse_axis[Rank + a] = true;
      }
F
fengjiayi 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
    }

    auto in_eigen = framework::EigenTensor<T, Rank>::From(in);
    auto out_eigen = framework::EigenTensor<T, Rank>::From(*out);
    auto* dev = context.eigen_device();

    out_eigen.device(*dev) = in_eigen.reverse(reverse_axis);
  }
};

template <typename DeviceContext, typename T>
class ReverseKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    auto* x_var = context.InputVar("X");
    const auto& axis = context.Attr<std::vector<int>>("axis");
    if (x_var->IsType<framework::LoDTensorArray>()) {
      auto& x_array = x_var->Get<framework::LoDTensorArray>();
      auto* out_array = context.Output<framework::LoDTensorArray>("Out");

      out_array->resize(x_array.size());
      for (size_t offset = 0; offset < x_array.size(); offset++) {
        auto& x_tensor = x_array.at(offset);
        PADDLE_ENFORCE_GT(
            x_tensor.memory_size(), 0,
            platform::errors::PreconditionNotMet(
                "The input LoDTensorArray X[%d] holds no memory.", offset));
        auto out_offset = x_array.size() - offset - 1;
        auto* out_tensor = &out_array->at(out_offset);

        out_tensor->set_lod(x_tensor.lod());
        TensorCopy(x_tensor, context.GetPlace(), out_tensor);
      }
      return;
    }
F
fengjiayi 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto* x = context.Input<framework::LoDTensor>("X");
    auto* out = context.Output<framework::LoDTensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    int rank = x->dims().size();
    auto& dev_ctx = context.template device_context<DeviceContext>();

    switch (rank) {
      case 1:
        ReverseFunctor<DeviceContext, T, 1> functor1;
        functor1(dev_ctx, *x, out, axis);
        break;
      case 2:
        ReverseFunctor<DeviceContext, T, 2> functor2;
        functor2(dev_ctx, *x, out, axis);
        break;
      case 3:
        ReverseFunctor<DeviceContext, T, 3> functor3;
        functor3(dev_ctx, *x, out, axis);
        break;
      case 4:
        ReverseFunctor<DeviceContext, T, 4> functor4;
        functor4(dev_ctx, *x, out, axis);
        break;
      case 5:
        ReverseFunctor<DeviceContext, T, 5> functor5;
        functor5(dev_ctx, *x, out, axis);
        break;
      case 6:
        ReverseFunctor<DeviceContext, T, 6> functor6;
        functor6(dev_ctx, *x, out, axis);
        break;
      default:
103 104 105
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "The reserve operator does not support input tensors"
            "whose ranks are greater than 6."));
F
fengjiayi 已提交
106 107 108 109 110 111
    }
  }
};

}  // namespace operators
}  // namespace paddle