lamb_op.h 25.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <math.h>  // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
Y
Yibing Liu 已提交
21 22
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
23
#include "paddle/fluid/platform/eigen_ext.h"
Y
Yibing Liu 已提交
24 25 26 27 28 29 30
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

namespace scatter = paddle::operators::math::scatter;

31
template <typename T, bool IsMultiPrecision>
32
struct LambMomentREGUpdateFunctor {
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  using MT = typename std::conditional<
      IsMultiPrecision, typename details::MPTypeTrait<T>::Type, T>::type;

  MT weight_decay_;
  MT beta1_;
  MT beta2_;
  MT epsilon_;

  MT beta1_pow_;
  MT* beta1_pow_out_;
  MT beta2_pow_;
  MT* beta2_pow_out_;
  const MT* moment1_;
  MT* moment1_out_;
  const MT* moment2_;
  MT* moment2_out_;
49
  const T* grad_;
50 51 52 53 54
  const MT* param_;
  MT* trust_ratio_div_;
  const bool* skip_update_;

  LambMomentREGUpdateFunctor(MT weight_decay, MT beta1, MT beta2, MT epsilon,
55 56 57 58
                             MT beta1_pow, MT beta2_pow, const MT* mom1,
                             MT* mom1_out, const MT* mom2, MT* mom2_out,
                             const T* grad, const MT* param,
                             MT* trust_ratio_div, const bool* skip_update)
59 60 61 62 63 64 65 66 67 68 69 70
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
71 72
        trust_ratio_div_(trust_ratio_div),
        skip_update_(skip_update) {}
73 74

  inline HOSTDEVICE void operator()(size_t i) const {
75
    if (skip_update_ && *skip_update_) return;
76

77 78 79 80 81 82 83 84 85
    MT g = static_cast<MT>(grad_[i]);
    MT mom1 = moment1_[i];
    MT mom2 = moment2_[i];
    MT beta1_pow = beta1_pow_;
    MT beta2_pow = beta2_pow_;
    MT p = param_[i];

    mom1 = beta1_ * mom1 + (static_cast<MT>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<MT>(1) - beta2_) * g * g;
86 87 88 89

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;

90 91
    MT mom1_unbiased = mom1 / (static_cast<MT>(1) - beta1_pow);
    MT mom2_unbiased = mom2 / (static_cast<MT>(1) - beta2_pow);
92
    trust_ratio_div_[i] =
93 94
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
95 96 97
  }
};

98
template <typename T, bool IsMultiPrecision>
99
struct LambMomentMENUpdateFunctor {
100 101 102 103 104 105 106 107 108 109 110 111 112 113
  using MT = typename std::conditional<
      IsMultiPrecision, typename details::MPTypeTrait<T>::Type, T>::type;

  MT weight_decay_;
  MT beta1_;
  MT beta2_;
  MT epsilon_;

  const MT* beta1_pow_;
  const MT* beta2_pow_;
  const MT* moment1_;
  MT* moment1_out_;
  const MT* moment2_;
  MT* moment2_out_;
Y
Yibing Liu 已提交
114
  const T* grad_;
115 116 117 118 119
  const MT* param_;
  MT* trust_ratio_div_;
  const bool* skip_update_;

  LambMomentMENUpdateFunctor(MT weight_decay, MT beta1, MT beta2, MT epsilon,
120
                             const MT* beta1_pow, const MT* beta2_pow,
121 122 123
                             const MT* mom1, MT* mom1_out, const MT* mom2,
                             MT* mom2_out, const T* grad, const MT* param,
                             MT* trust_ratio_div, const bool* skip_update)
Y
Yibing Liu 已提交
124 125 126 127 128 129 130 131 132 133 134 135
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
136 137
        trust_ratio_div_(trust_ratio_div),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
138 139

  inline HOSTDEVICE void operator()(size_t i) const {
140 141 142 143 144 145 146
    if (skip_update_ && *skip_update_) return;
    MT g = static_cast<MT>(grad_[i]);
    MT mom1 = moment1_[i];
    MT mom2 = moment2_[i];
    MT beta1_pow = *beta1_pow_;
    MT beta2_pow = *beta2_pow_;
    MT p = param_[i];
Y
Yibing Liu 已提交
147

148 149
    mom1 = beta1_ * mom1 + (static_cast<MT>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<MT>(1) - beta2_) * g * g;
Y
Yibing Liu 已提交
150 151 152

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
153

154 155
    MT mom1_unbiased = mom1 / (static_cast<MT>(1) - beta1_pow);
    MT mom2_unbiased = mom2 / (static_cast<MT>(1) - beta2_pow);
156
    trust_ratio_div_[i] =
157 158
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
Y
Yibing Liu 已提交
159 160 161 162
  }
};

template <typename T>
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
struct SparseLambMomentREGUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  T beta1_pow_;
  T beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

183 184
  const bool* skip_update_;

185
  SparseLambMomentREGUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
186 187 188 189 190 191
                                   T beta1_pow, T beta2_pow, const T* mom1,
                                   T* mom1_out, const T* mom2, T* mom2_out,
                                   const T* grad, const T* param,
                                   T* trust_ratio_div, const int64_t* rows,
                                   int64_t row_numel, int64_t row_count,
                                   const bool* skip_update)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
207 208
        row_count_(row_count),
        skip_update_(skip_update) {}
209 210 211 212 213 214 215 216 217

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T beta1_pow = beta1_pow_;
    T beta2_pow = beta2_pow_;
    T p = param_[i];

218 219
    mom1 = beta1_ * mom1 + (static_cast<T>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<T>(1) - beta2_) * g * g;
220 221 222 223

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;

224 225
    T mom1_unbiased = mom1 / (static_cast<T>(1) - beta1_pow);
    T mom2_unbiased = mom2 / (static_cast<T>(1) - beta2_pow);
226
    trust_ratio_div_[i] =
227 228
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
229 230 231
  }

  inline HOSTDEVICE void operator()(size_t i) const {
232
    if (skip_update_ && *skip_update_) return;
233 234
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
235 236
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
237 238 239 240 241 242
    update(i, g);
  }
};

template <typename T>
struct SparseLambMomentMENUpdateFunctor {
Y
Yibing Liu 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

262 263
  const bool* skip_update_;

264
  SparseLambMomentMENUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
265
                                   const T* beta1_pow, const T* beta2_pow,
266 267 268
                                   const T* mom1, T* mom1_out, const T* mom2,
                                   T* mom2_out, const T* grad, const T* param,
                                   T* trust_ratio_div, const int64_t* rows,
269 270
                                   int64_t row_numel, int64_t row_count,
                                   const bool* skip_update)
Y
Yibing Liu 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
286 287
        row_count_(row_count),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
288 289 290 291 292

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
293 294
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yibing Liu 已提交
295 296
    T p = param_[i];

297 298
    mom1 = beta1_ * mom1 + (static_cast<T>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<T>(1) - beta2_) * g * g;
Y
Yibing Liu 已提交
299 300 301

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
302

303 304
    T mom1_unbiased = mom1 / (static_cast<T>(1) - beta1_pow);
    T mom2_unbiased = mom2 / (static_cast<T>(1) - beta2_pow);
305
    trust_ratio_div_[i] =
306 307
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
Y
Yibing Liu 已提交
308 309 310
  }

  inline HOSTDEVICE void operator()(size_t i) const {
311
    if (skip_update_ && *skip_update_) return;
Y
Yibing Liu 已提交
312 313
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
314 315
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
Y
Yibing Liu 已提交
316 317 318 319
    update(i, g);
  }
};

320 321 322 323 324 325 326 327 328 329 330
template <typename MT, bool NeedUpdateBetaPow /*=true*/>
struct LambBetaPowUpdateFunctor {
  void SetBetaPows(const MT* beta1pow, const MT* beta2pow, MT* beta1pow_out,
                   MT* beta2pow_out, MT beta1, MT beta2) {
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1pow_out_ = beta1pow_out;
    beta2pow_out_ = beta2pow_out;
    beta1_ = beta1;
    beta2_ = beta2;
  }
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  HOSTDEVICE void UpdateBetaPow(size_t i) const {
    if (i == 0) {
      beta1pow_out_[0] = beta1pow_[0] * beta1_;
      beta2pow_out_[0] = beta2pow_[0] * beta2_;
    }
  }

 private:
  const MT* beta1pow_;
  const MT* beta2pow_;
  MT* beta1pow_out_;
  MT* beta2pow_out_;
  MT beta1_;
  MT beta2_;
};

template <typename MT>
struct LambBetaPowUpdateFunctor<MT, /*NeedUpdateBetaPow=*/false> {
  void SetBetaPows(const MT* beta1pow, const MT* beta2pow, MT* beta1pow_out,
                   MT* beta2pow_out, MT beta1, MT beta2) {}
  HOSTDEVICE void UpdateBetaPow(size_t) const {}
};

template <typename T, typename MT, bool IsMultiPrecision, bool UpdateBetaPow>
struct LambParamUpateFunctor
    : public LambBetaPowUpdateFunctor<MT, UpdateBetaPow> {
358
  const MT* lr_;
Y
Yibing Liu 已提交
359
  const T* param_;
360 361 362 363
  const MT* master_param_;
  const MT* param_norm_;
  const MT* trust_ratio_div_;
  const MT* trust_ratio_div_norm_;
Y
Yibing Liu 已提交
364
  T* param_out_;
365 366 367
  MT* master_param_out_;

  const bool* skip_update_;
Y
Yibing Liu 已提交
368

369 370 371 372
  LambParamUpateFunctor(const MT* lr, const T* param, const MT* master_param,
                        const MT* param_norm, const MT* trust_ratio_div,
                        const MT* trust_ratio_div_norm, T* param_out,
                        MT* master_param_out, const bool* skip_update)
Y
Yibing Liu 已提交
373 374
      : lr_(lr),
        param_(param),
375
        master_param_(master_param),
Y
Yibing Liu 已提交
376 377 378
        param_norm_(param_norm),
        trust_ratio_div_(trust_ratio_div),
        trust_ratio_div_norm_(trust_ratio_div_norm),
379 380 381
        param_out_(param_out),
        master_param_out_(master_param_out),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
382 383

  inline HOSTDEVICE void operator()(size_t i) const {
384 385 386 387 388 389 390 391
    if (skip_update_ && *skip_update_) return;
    MT lr = *lr_;
    MT pn = *param_norm_;
    MT tn = *trust_ratio_div_norm_;

    MT r = (pn > static_cast<MT>(0) && tn > static_cast<MT>(0))
               ? pn / tn
               : static_cast<MT>(1);
Y
Yibing Liu 已提交
392
    lr *= r;
393 394 395 396 397 398
    MT p = IsMultiPrecision ? master_param_[i] : static_cast<MT>(param_[i]);
    MT param_out = p - lr * trust_ratio_div_[i];
    param_out_[i] = static_cast<T>(param_out);
    if (IsMultiPrecision) {
      master_param_out_[i] = param_out;
    }
399
    this->UpdateBetaPow(i);
Y
Yibing Liu 已提交
400 401 402 403 404 405 406
  }
};

template <typename DeviceContext, typename T>
class LambOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    using MT = typename details::MPTypeTrait<T>::Type;
    bool multi_precision = ctx.Attr<bool>("multi_precision");
    if (multi_precision) {
      ComputeImpl<MT, true>(ctx);
    } else {
      ComputeImpl<T, false>(ctx);
    }
  }

 private:
  template <typename MT, bool IsMultiPrecision>
  void ComputeImpl(const framework::ExecutionContext& ctx) const {
    if (!IsMultiPrecision) {
      constexpr auto kIsSameType = std::is_same<T, MT>::value;
      PADDLE_ENFORCE_EQ(
          kIsSameType, true,
          platform::errors::InvalidArgument(
              "When multi_precision=False, T and MT must be the same type."));
    }
    const auto* skip_update = ctx.Input<framework::LoDTensor>("SkipUpdate");
    const bool* skip_update_flag = skip_update && skip_update->IsInitialized()
                                       ? skip_update->data<bool>()
                                       : nullptr;
    if (skip_update_flag && platform::is_cpu_place(skip_update->place()) &&
        (*skip_update_flag)) {
      return;
    }

    auto weight_decay = static_cast<MT>(ctx.Attr<float>("weight_decay"));
    auto beta1 = static_cast<MT>(ctx.Attr<float>("beta1"));
    auto beta2 = static_cast<MT>(ctx.Attr<float>("beta2"));
    auto epsilon = static_cast<MT>(ctx.Attr<float>("epsilon"));
    const auto& param = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Param"), "Input", "Param", "Lamb");
    const auto* grad_var = ctx.InputVar("Grad");
    const auto& mom1 = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Moment1"), "Input", "Moment1", "Lamb");
    const auto& mom2 = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Moment2"), "Input", "Moment2", "Lamb");
    const auto& lr =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("LearningRate"),
                        "Input", "LearningRate", "Lamb");

    const auto& beta1_pow =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("Beta1Pow"), "Input",
                        "Beta1Pow", "Lamb");
    const auto& beta2_pow =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("Beta2Pow"), "Input",
                        "Beta2Pow", "Lamb");

    auto& param_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("ParamOut"), "Output",
                        "ParamOut", "Lamb");
    auto& mom1_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Moment1Out"),
                        "Output", "Moment1Out", "Lamb");
    auto& mom2_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Moment2Out"),
                        "Output", "Moment2Out", "Lamb");
    auto& beta1_pow_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Beta1PowOut"),
                        "Output", "Beta1PowOut", "Lamb");
    auto& beta2_pow_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Beta2PowOut"),
                        "Output", "Beta2PowOut", "Lamb");
    const auto* master_param =
        IsMultiPrecision ? ctx.Input<framework::LoDTensor>("MasterParam")
                         : nullptr;
    auto* master_param_out =
        IsMultiPrecision ? ctx.Output<framework::LoDTensor>("MasterParamOut")
                         : nullptr;

    if (IsMultiPrecision) {
      PADDLE_ENFORCE_NOT_NULL(master_param,
                              platform::errors::InvalidArgument(
                                  "Input(MasterParam) must be provided when "
                                  "multi_precision=True."));
      PADDLE_ENFORCE_NOT_NULL(master_param_out,
                              platform::errors::InvalidArgument(
                                  "Output(MasterParamOut) must be provided "
                                  "when multi_precision=True."));
    }
Y
Yibing Liu 已提交
489 490 491

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, param.numel());
492 493 494
    auto trust_ratio_div =
        ctx.AllocateTmpTensor<MT, DeviceContext>(param.dims(), dev_ctx);

495
    const void* param_ptr = param.data();
496
    const void* master_param_ptr =
497
        master_param ? master_param->data() : nullptr;
498 499 500 501 502
    void* param_out_ptr = param_out.template mutable_data<T>(ctx.GetPlace());
    void* master_param_out_ptr =
        master_param_out
            ? master_param_out->template mutable_data<MT>(ctx.GetPlace())
            : nullptr;
Y
Yibing Liu 已提交
503 504

    // Update moments
505 506 507 508 509
    bool should_update_beta_pow_later = false;
    const MT *beta1_pow_ptr = nullptr, *beta2_pow_ptr = nullptr;
    MT *beta1_pow_out_ptr = nullptr, *beta2_pow_out_ptr = nullptr;
    VLOG(10) << "Beta1Pow place: " << beta1_pow.place()
             << " , Beta2Pow place: " << beta2_pow.place();
Y
Yibing Liu 已提交
510
    if (grad_var->IsType<framework::LoDTensor>()) {
511
      auto& grad = grad_var->Get<framework::LoDTensor>();
512 513 514
      if (platform::is_gpu_place(ctx.GetPlace()) &&
          beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
515 516
        LambMomentREGUpdateFunctor<T, IsMultiPrecision> moment_update_functor(
            weight_decay, beta1, beta2, epsilon, *beta1_pow.template data<MT>(),
517
            *beta2_pow.template data<MT>(), mom1.template data<MT>(),
518 519 520 521 522 523 524
            mom1_out.template mutable_data<MT>(ctx.GetPlace()),
            mom2.template data<MT>(),
            mom2_out.template mutable_data<MT>(ctx.GetPlace()),
            grad.template data<T>(),
            static_cast<const MT*>(IsMultiPrecision ? master_param_ptr
                                                    : param_ptr),
            trust_ratio_div.template data<MT>(), skip_update_flag);
525
        for_range(moment_update_functor);
526 527 528 529
        beta1_pow_out.template mutable_data<MT>(platform::CPUPlace())[0] =
            beta1 * beta1_pow.template data<MT>()[0];
        beta2_pow_out.template mutable_data<MT>(platform::CPUPlace())[0] =
            beta2 * beta2_pow.template data<MT>()[0];
530
      } else {
531 532 533 534 535 536 537
        beta1_pow_ptr = beta1_pow.template data<MT>();
        beta2_pow_ptr = beta2_pow.template data<MT>();
        beta1_pow_out_ptr =
            beta1_pow_out.template mutable_data<MT>(ctx.GetPlace());
        beta2_pow_out_ptr =
            beta2_pow_out.template mutable_data<MT>(ctx.GetPlace());
        should_update_beta_pow_later = true;
538
        LambMomentMENUpdateFunctor<T, IsMultiPrecision> moment_update_functor(
539 540 541
            weight_decay, beta1, beta2, epsilon,
            static_cast<const MT*>(beta1_pow_ptr),
            static_cast<const MT*>(beta2_pow_ptr), mom1.template data<MT>(),
542 543 544 545 546 547 548
            mom1_out.template mutable_data<MT>(ctx.GetPlace()),
            mom2.template data<MT>(),
            mom2_out.template mutable_data<MT>(ctx.GetPlace()),
            grad.template data<T>(),
            static_cast<const MT*>(IsMultiPrecision ? master_param_ptr
                                                    : param_ptr),
            trust_ratio_div.template data<MT>(), skip_update_flag);
549 550
        for_range(moment_update_functor);
      }
Y
Yibing Liu 已提交
551
    } else if (grad_var->IsType<framework::SelectedRows>()) {
552 553 554
      PADDLE_ENFORCE_EQ(IsMultiPrecision, false,
                        platform::errors::Unimplemented(
                            "SelectedRows gradient is not supported when "
555 556 557 558 559 560
                            "multi_precision=True."));
      constexpr bool kIsSameType = std::is_same<T, MT>::value;
      PADDLE_ENFORCE_EQ(kIsSameType, true,
                        platform::errors::Unimplemented(
                            "SelectedRows gradient is not supported when "
                            "multi_precision=True."));
561 562
      auto& grad = GET_DATA_SAFELY(ctx.Input<framework::SelectedRows>("Grad"),
                                   "Input", "Grad", "Lamb");
Y
Yibing Liu 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      framework::SelectedRows tmp_grad_merge;
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(dev_ctx, grad, &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
      }

      auto& grad_merge = *grad_merge_ptr;
      auto& grad_tensor = grad_merge.value();
      const T* grad_data = grad_tensor.template data<T>();
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
594 595 596 597
      if (platform::is_gpu_place(ctx.GetPlace()) &&
          beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
        SparseLambMomentREGUpdateFunctor<T> moment_update_functor(
598 599
            static_cast<T>(weight_decay), static_cast<T>(beta1),
            static_cast<T>(beta2), static_cast<T>(epsilon),
600 601
            *beta1_pow.template data<T>(), *beta2_pow.template data<T>(),
            mom1.template data<T>(),
602 603 604 605
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
            param.template data<T>(), trust_ratio_div.template data<T>(), rows,
606
            row_numel, grad_merge.rows().size(), skip_update_flag);
607 608
        for_range(moment_update_functor);
        beta1_pow_out.template mutable_data<T>(platform::CPUPlace())[0] =
609
            static_cast<T>(beta1) * beta1_pow.template data<T>()[0];
610
        beta2_pow_out.template mutable_data<T>(platform::CPUPlace())[0] =
611
            static_cast<T>(beta2) * beta2_pow.template data<T>()[0];
612
      } else {
613 614 615 616 617 618 619
        beta1_pow_ptr = beta1_pow.template data<MT>();
        beta2_pow_ptr = beta2_pow.template data<MT>();
        beta1_pow_out_ptr =
            beta1_pow_out.template mutable_data<MT>(ctx.GetPlace());
        beta2_pow_out_ptr =
            beta2_pow_out.template mutable_data<MT>(ctx.GetPlace());
        should_update_beta_pow_later = true;
620
        SparseLambMomentMENUpdateFunctor<T> moment_update_functor(
621 622
            static_cast<T>(weight_decay), static_cast<T>(beta1),
            static_cast<T>(beta2), static_cast<T>(epsilon),
623 624
            reinterpret_cast<const T*>(beta1_pow_ptr),
            reinterpret_cast<const T*>(beta2_pow_ptr), mom1.template data<T>(),
625 626 627 628
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
            param.template data<T>(), trust_ratio_div.template data<T>(), rows,
629
            row_numel, grad_merge.rows().size(), skip_update_flag);
630 631
        for_range(moment_update_functor);
      }
Y
Yibing Liu 已提交
632
    } else {
633 634 635
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Variable type not supported by lamb_op. Expect LoDTensor or "
          "SelectedRows, but got %s",
636
          framework::ToTypeName(grad_var->Type())));
Y
Yibing Liu 已提交
637 638 639
    }

    // Update parameter
640 641 642
    auto p_norm_t = ctx.AllocateTmpTensor<MT, DeviceContext>({1}, dev_ctx);
    auto trust_ratio_div_norm_t =
        ctx.AllocateTmpTensor<MT, DeviceContext>({1}, dev_ctx);
Y
Yibing Liu 已提交
643

644 645 646 647
    auto p_norm = framework::EigenScalar<MT>::From(p_norm_t);
    auto trust_ratio_div_norm =
        framework::EigenScalar<MT>::From(trust_ratio_div_norm_t);
    auto t = framework::EigenVector<MT>::Flatten(trust_ratio_div);
Y
Yibing Liu 已提交
648

649 650
    // TODO(zengjinle): remove the following Eigen operations when
    // *skip_update == true.
Y
Yibing Liu 已提交
651
    auto* place = dev_ctx.eigen_device();
652 653 654 655 656 657 658
    if (IsMultiPrecision) {
      auto mp = framework::EigenVector<MT>::Flatten(*master_param);
      p_norm.device(*place) = mp.square().sum().sqrt();
    } else {
      auto p = framework::EigenVector<MT>::Flatten(param);
      p_norm.device(*place) = p.square().sum().sqrt();
    }
Y
Yibing Liu 已提交
659
    trust_ratio_div_norm.device(*place) = t.square().sum().sqrt();
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
#define CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(__should_update_beta_pow)         \
  do {                                                                       \
    LambParamUpateFunctor<T, MT, IsMultiPrecision, __should_update_beta_pow> \
    param_update_functor(                                                    \
        lr.template data<MT>(), static_cast<const T*>(param_ptr),            \
        static_cast<const MT*>(master_param_ptr),                            \
        p_norm_t.template data<MT>(), trust_ratio_div.template data<MT>(),   \
        trust_ratio_div_norm_t.template data<MT>(),                          \
        static_cast<T*>(param_out_ptr),                                      \
        static_cast<MT*>(master_param_out_ptr), skip_update_flag);           \
    if (__should_update_beta_pow) {                                          \
      param_update_functor.SetBetaPows(beta1_pow_ptr, beta2_pow_ptr,         \
                                       beta1_pow_out_ptr, beta2_pow_out_ptr, \
                                       beta1, beta2);                        \
    }                                                                        \
    for_range(param_update_functor);                                         \
  } while (0)

    if (should_update_beta_pow_later) {
      CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(true);
    } else {
      CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(false);
    }

#undef CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC
Y
Yibing Liu 已提交
686 687 688 689 690
  }
};

}  // namespace operators
}  // namespace paddle