ext_tensor.cc 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/extension/include/ext_tensor.h"
16

17
#include <utility>
18

19 20 21
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
22
#include "paddle/fluid/platform/complex.h"
23
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/fluid/platform/float16.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "paddle/fluid/platform/transform.h"

namespace paddle {

template <typename InType, typename OutType>
struct CastDataTypeFunctor {
  HOSTDEVICE inline OutType operator()(InType in) const {
    return static_cast<OutType>(in);
  }
};

template <typename InType>
struct CastDataType {
  CastDataType(const framework::Tensor &in, framework::Tensor *out,
               const platform::DeviceContext *ctx)
      : in_(in), out_(out), ctx_(ctx) {}
  const framework::Tensor in_;
  framework::Tensor *out_;
  const platform::DeviceContext *ctx_;

  template <typename OutType>
  void apply() {
    auto *in_begin = in_.data<InType>();
    auto *in_end = in_begin + in_.numel();
    auto *out_begin = out_->mutable_data<OutType>(in_.place());

    if (platform::is_cpu_place(in_.place())) {
      platform::Transform<platform::CPUDeviceContext> trans;
      auto *context = static_cast<const platform::CPUDeviceContext *>(ctx_);
      trans(*context, in_begin, in_end, out_begin,
            CastDataTypeFunctor<InType, OutType>());
56
#if defined(__NVCC__) || defined(__HIPCC__)
57 58 59 60 61 62 63 64 65 66 67 68 69
    } else if (platform::is_gpu_place(in_.place())) {
      platform::Transform<platform::CUDADeviceContext> trans;
      auto *context = static_cast<const platform::CUDADeviceContext *>(ctx_);
      trans(*context, in_begin, in_end, out_begin,
            CastDataTypeFunctor<InType, OutType>());
      context->Wait();
#endif
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Place type is not supported when casting data type."));
    }
  }
};
70

71
template <typename T>
72 73 74
void DeviceCopy(T *src, T *dst, PlaceType src_plc, PlaceType dst_plc,
                int64_t ele_size) {
#if defined(PADDLE_WITH_CUDA)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  int device_num = paddle::platform::GetCurrentDeviceId();
  platform::CUDAPlace gpu_place(device_num);
  auto *dev_ctx =
      static_cast<const platform::CUDADeviceContext *>(pool.Get(gpu_place));
  if ((src_plc == PlaceType::kGPU) && (dst_plc == PlaceType::kCPU)) {
    memory::Copy(platform::CPUPlace(), static_cast<void *>(dst), gpu_place, src,
                 ele_size, dev_ctx->stream());
  } else if ((src_plc == PlaceType::kGPU) && (dst_plc == PlaceType::kGPU)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), gpu_place, src, ele_size,
                 dev_ctx->stream());
  } else if ((src_plc == PlaceType::kCPU) && (dst_plc == PlaceType::kGPU)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), platform::CPUPlace(), src,
                 ele_size, dev_ctx->stream());
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Only GPU related Copy can reach this func."));
  }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#elif defined(PADDLE_WITH_HIP)
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  int device_num = paddle::platform::GetCurrentDeviceId();
  platform::CUDAPlace gpu_place(device_num);
  auto *dev_ctx =
      static_cast<const platform::CUDADeviceContext *>(pool.Get(gpu_place));
  if ((src_plc == PlaceType::kHIP) && (dst_plc == PlaceType::kCPU)) {
    memory::Copy(platform::CPUPlace(), static_cast<void *>(dst), gpu_place, src,
                 ele_size, dev_ctx->stream());
  } else if ((src_plc == PlaceType::kHIP) && (dst_plc == PlaceType::kHIP)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), gpu_place, src, ele_size,
                 dev_ctx->stream());
  } else if ((src_plc == PlaceType::kCPU) && (dst_plc == PlaceType::kHIP)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), platform::CPUPlace(), src,
                 ele_size, dev_ctx->stream());
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Only GPU related Copy can reach this func."));
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "This function can only be used if compiled with"
      "either -DWITH_ROCM=ON or -DWITH_GPU=ON"));
116 117 118 119 120 121 122 123 124
#endif
}

#define GET_CASTED_TENSOR                               \
  if (!tensor_) {                                       \
    tensor_ = std::make_shared<framework::LoDTensor>(); \
  }                                                     \
  auto *tensor = static_cast<framework::LoDTensor *>(tensor_.get());

H
Hao Lin 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#define GET_INNER_PLACE                               \
  platform::Place place;                              \
  switch (place_) {                                   \
    case PlaceType::kCPU:                             \
      place = platform::CPUPlace();                   \
      break;                                          \
    case PlaceType::kGPU:                             \
      place = platform::CUDAPlace();                  \
      break;                                          \
    default:                                          \
      PADDLE_THROW(platform::errors::Unavailable(     \
          "Custom operator unsupported place id(%d)", \
          static_cast<int>(place_)));                 \
  }

C
Chen Weihang 已提交
140
void Tensor::reshape(const std::vector<int64_t> &shape) {
141
  GET_CASTED_TENSOR
142 143
  auto new_dim = framework::make_ddim(shape);
  tensor->Resize(new_dim);
144 145 146
}

Tensor::Tensor(const PlaceType &place)
147 148 149
    : tensor_(std::make_shared<framework::LoDTensor>()),
      place_(place),
      stream_(StreamWrapper()) {}
150 151 152 153 154 155 156 157 158

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : tensor_(std::make_shared<framework::LoDTensor>()),
      place_(place),
      stream_(StreamWrapper()) {
  GET_CASTED_TENSOR
  tensor->Resize(framework::make_ddim(shape));
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  place_ = place;
  return mutable_data<T>();
}

template <typename T>
T *Tensor::mutable_data() {
  GET_CASTED_TENSOR
  PADDLE_ENFORCE_GT(
      tensor->numel(), 0,
      platform::errors::PreconditionNotMet(
          "You should call Tensor::Reshape(const std::vector<int> "
          "&shape)"
          "function before retrieving mutable_data from input tensor."));
  switch (static_cast<int>(place_)) {
    case static_cast<int>(PlaceType::kCPU): {
      return tensor->mutable_data<T>(platform::CPUPlace());
    }
178
#if defined(PADDLE_WITH_CUDA)
179 180 181 182
    case static_cast<int>(PlaceType::kGPU): {
      int device_num = platform::GetCurrentDeviceId();
      return tensor->mutable_data<T>(platform::CUDAPlace(device_num));
    }
183 184 185 186 187
#elif defined(PADDLE_WITH_HIP)
    case static_cast<int>(PlaceType::kHIP): {
      int device_num = platform::GetCurrentDeviceId();
      return tensor->mutable_data<T>(platform::CUDAPlace(device_num));
    }
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#endif
    default:
      PADDLE_THROW(platform::errors::Unavailable(
          "Custom operator unsupported place id(%d)",
          static_cast<int>(place_)));
  }
}

template <typename T>
T *Tensor::data() const {
  GET_CASTED_TENSOR;
  auto *res = tensor->data<T>();
  return res;
}

DataType Tensor::type() const {
  GET_CASTED_TENSOR;
  auto type = tensor->type();
  if (type == framework::proto::VarType::FP32) {
    return DataType::FLOAT32;
  } else if (type == framework::proto::VarType::INT64) {
    return DataType::INT64;
  } else if (type == framework::proto::VarType::INT32) {
    return DataType::INT32;
  } else if (type == framework::proto::VarType::INT16) {
    return DataType::INT16;
  } else if (type == framework::proto::VarType::INT8) {
    return DataType::INT8;
  } else if (type == framework::proto::VarType::UINT8) {
    return DataType::UINT8;
  } else if (type == framework::proto::VarType::FP64) {
    return DataType::FLOAT64;
  } else if (type == framework::proto::VarType::BOOL) {
    return DataType::BOOL;
222 223 224 225
  } else if (type == framework::proto::VarType::COMPLEX64) {
    return DataType::COMPLEX64;
  } else if (type == framework::proto::VarType::COMPLEX128) {
    return DataType::COMPLEX128;
226 227
  } else if (type == framework::proto::VarType::FP16) {
    return DataType::FLOAT16;
228
  }
229
  // TODO(JiabinYang) Support more dtype here
230 231 232 233
  return DataType::FLOAT32;
}

template <typename T>
234
Tensor Tensor::copy_to(const PlaceType &target_place) const {
235 236 237 238 239 240 241 242 243 244 245 246 247
  GET_CASTED_TENSOR;
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
                    platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
  size_t ele_size = tensor->numel() * sizeof(T);
  auto *p_src_data = tensor->data<T>();
  auto src_place = place();
  Tensor target = Tensor(target_place);
  target.reshape(shape());
  auto *p_target_data = target.template mutable_data<T>();

248 249 250 251 252 253 254 255 256 257 258 259 260
  bool supported_gpu_transform = false;
#if defined(PADDLE_WITH_CUDA)
  supported_gpu_transform =
      (src_place == PlaceType::kGPU && target_place == PlaceType::kCPU) ||
      (src_place == PlaceType::kCPU && target_place == PlaceType::kGPU) ||
      (src_place == PlaceType::kGPU && target_place == PlaceType::kGPU);
#elif defined(PADDLE_WITH_HIP)
  supported_gpu_transform =
      (src_place == PlaceType::kHIP && target_place == PlaceType::kCPU) ||
      (src_place == PlaceType::kCPU && target_place == PlaceType::kHIP) ||
      (src_place == PlaceType::kHIP && target_place == PlaceType::kHIP);
#endif

261 262
  if ((src_place == PlaceType::kCPU) && (target_place == PlaceType::kCPU)) {
    std::memcpy(static_cast<void *>(p_target_data), p_src_data, ele_size);
263 264
  } else if (supported_gpu_transform) {
    DeviceCopy<T>(p_src_data, p_target_data, src_place, target_place, ele_size);
265 266 267 268 269 270 271 272
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not supported place transform of place: %d to place: %d",
        static_cast<int>(src_place), static_cast<int>(target_place)));
  }
  return target;
}

H
Hao Lin 已提交
273 274 275 276 277 278 279 280 281 282
Tensor Tensor::slice(const int64_t begin_idx, const int64_t end_idx) const {
  GET_CASTED_TENSOR
  GET_INNER_PLACE
  framework::Tensor intermediate = tensor->Slice(begin_idx, end_idx);
  Tensor target = Tensor(place_);
  framework::CustomTensorUtils::ShareDataFrom(
      static_cast<const void *>(&intermediate), target);
  return target;
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
template PD_DLL_DECL Tensor
Tensor::copy_to<float>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<double>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<bool>(const PlaceType &target_place) const;
299
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex<float>>(
300
    const PlaceType &target_place) const;
301
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex<double>>(
302
    const PlaceType &target_place) const;
303 304
template PD_DLL_DECL Tensor
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;
305

306 307 308 309 310 311 312 313
template PD_DLL_DECL float *Tensor::data<float>() const;
template PD_DLL_DECL double *Tensor::data<double>() const;
template PD_DLL_DECL int64_t *Tensor::data<int64_t>() const;
template PD_DLL_DECL int32_t *Tensor::data<int32_t>() const;
template PD_DLL_DECL uint8_t *Tensor::data<uint8_t>() const;
template PD_DLL_DECL int8_t *Tensor::data<int8_t>() const;
template PD_DLL_DECL int16_t *Tensor::data<int16_t>() const;
template PD_DLL_DECL bool *Tensor::data<bool>() const;
314 315 316 317
template PD_DLL_DECL paddle::platform::complex<float>
    *Tensor::data<paddle::platform::complex<float>>() const;
template PD_DLL_DECL paddle::platform::complex<double>
    *Tensor::data<paddle::platform::complex<double>>() const;
318 319
template PD_DLL_DECL paddle::platform::float16 *
Tensor::data<paddle::platform::float16>() const;
320

321 322 323 324 325 326 327 328
template PD_DLL_DECL float *Tensor::mutable_data<float>();
template PD_DLL_DECL double *Tensor::mutable_data<double>();
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>();
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>();
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>();
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>();
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>();
template PD_DLL_DECL bool *Tensor::mutable_data<bool>();
329 330 331 332
template PD_DLL_DECL paddle::platform::complex<float>
    *Tensor::mutable_data<paddle::platform::complex<float>>();
template PD_DLL_DECL paddle::platform::complex<double>
    *Tensor::mutable_data<paddle::platform::complex<double>>();
333 334
template PD_DLL_DECL paddle::platform::float16 *
Tensor::mutable_data<paddle::platform::float16>();
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349
template PD_DLL_DECL float *Tensor::mutable_data<float>(const PlaceType &place);
template PD_DLL_DECL double *Tensor::mutable_data<double>(
    const PlaceType &place);
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>(
    const PlaceType &place);
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>(
    const PlaceType &place);
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>(
    const PlaceType &place);
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>(
    const PlaceType &place);
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>(
    const PlaceType &place);
template PD_DLL_DECL bool *Tensor::mutable_data<bool>(const PlaceType &place);
350 351 352 353
template PD_DLL_DECL paddle::platform::complex<float> *
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
template PD_DLL_DECL paddle::platform::complex<double> *
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
354 355
template PD_DLL_DECL paddle::platform::float16 *
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);
356

C
Chen Weihang 已提交
357
std::vector<int64_t> Tensor::shape() const {
358
  GET_CASTED_TENSOR
C
Chen Weihang 已提交
359
  return framework::vectorize<int64_t>(tensor->dims());
360 361 362 363 364 365
}

const PlaceType &Tensor::place() const {
  GET_CASTED_TENSOR;
  if (platform::is_cpu_place(tensor->place())) {
    place_ = PlaceType::kCPU;
366
#if defined(PADDLE_WITH_CUDA)
367 368
  } else if (platform::is_gpu_place(tensor->place())) {
    place_ = PlaceType::kGPU;
369 370 371 372
#elif defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor->place())) {
    place_ = PlaceType::kHIP;
#endif
373 374 375
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Current Tensor hold unsupported Place Type, Please Init it"
376 377
        "using Tensor::mutable_data<T>(PaddlePlace) with T among:"
        "Place::kCPU or Place::kGPU or Place::kHIP"));
378 379 380 381
  }
  return place_;
}

382
Tensor Tensor::cast(const DataType &target_type) const {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  GET_CASTED_TENSOR;
  Tensor rlt = Tensor(place());
  rlt.reshape(this->shape());
  auto rlt_tensor_ = static_cast<framework::LoDTensor *>(rlt.tensor_.get());
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto ctx = pool.Get(tensor->place());
  auto src_type = tensor->type();
  auto dst_type =
      framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(target_type);
  switch (src_type) {
    case framework::proto::VarType::FP32:
      framework::VisitDataType(dst_type,
                               CastDataType<float>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::FP64:
      framework::VisitDataType(dst_type,
                               CastDataType<double>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT32:
      framework::VisitDataType(dst_type,
                               CastDataType<int>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT64:
      framework::VisitDataType(
          dst_type, CastDataType<int64_t>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::BOOL:
      framework::VisitDataType(dst_type,
                               CastDataType<bool>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT16:
      framework::VisitDataType(
          dst_type, CastDataType<int16_t>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::UINT8:
      framework::VisitDataType(
          dst_type, CastDataType<uint8_t>(*tensor, rlt_tensor_, ctx));
      break;
421
    case framework::proto::VarType::COMPLEX64:
422 423 424
      framework::VisitDataType(dst_type,
                               CastDataType<paddle::platform::complex<float>>(
                                   *tensor, rlt_tensor_, ctx));
425 426 427
      break;
    case framework::proto::VarType::COMPLEX128:
      framework::VisitDataType(dst_type,
428
                               CastDataType<paddle::platform::complex<double>>(
429 430
                                   *tensor, rlt_tensor_, ctx));
      break;
431 432 433 434 435
    case framework::proto::VarType::FP16:
      framework::VisitDataType(
          dst_type,
          CastDataType<paddle::platform::float16>(*tensor, rlt_tensor_, ctx));
      break;
436
    // TODO(JiabinYang) Support more dtype here
437 438 439 440 441 442 443 444 445 446 447 448 449
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when casting data type.",
          framework::DataTypeToString(src_type)));
  }
  return rlt;
}

int64_t Tensor::size() const {
  GET_CASTED_TENSOR;
  return tensor->numel();
}

450 451 452 453 454 455 456 457 458
bool Tensor::is_initialized() const {
  GET_CASTED_TENSOR;
  if (tensor->IsInitialized()) {
    return true;
  } else {
    return false;
  }
}

459 460 461 462 463 464 465 466 467
#define DEFINE_STREAM(_stream_t_)                               \
  _stream_t_ Tensor::stream() const {                           \
    if (!stream_.IsStreamSet()) {                               \
      PADDLE_THROW(platform::errors::PreconditionNotMet(        \
          "Stream is not Set, only input tensor will have "     \
          "stream which is set by framework "));                \
    } else {                                                    \
      return reinterpret_cast<_stream_t_>(stream_.GetStream()); \
    }                                                           \
468
  }
469 470 471 472 473

#if defined(PADDLE_WITH_CUDA)
DEFINE_STREAM(cudaStream_t)
#elif defined(PADDLE_WITH_HIP)
DEFINE_STREAM(hipStream_t)
474 475
#endif

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
namespace framework {

void CustomTensorUtils::ShareDataTo(const paddle::Tensor &src, void *dst) {
  static_cast<framework::LoDTensor *>(dst)->ShareDataWith(
      *static_cast<framework::LoDTensor *>(src.tensor_.get()));
}

void CustomTensorUtils::ShareDataFrom(const void *src,
                                      const paddle::Tensor &dst) {
  if (!dst.tensor_) {
    dst.tensor_ = std::make_shared<framework::LoDTensor>();
  }
  auto *tensor = static_cast<framework::LoDTensor *>(dst.tensor_.get());
  tensor->ShareDataWith(*static_cast<const framework::LoDTensor *>(src));
}

}  // namespace framework
}  // namespace paddle