test_tensorrt.cc 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15
#include <cuda_runtime_api.h>
Y
Yan Chunwei 已提交
16 17
#include <glog/logging.h>
#include <gtest/gtest.h>
18

Y
Yan Chunwei 已提交
19
#include "NvInfer.h"
20
#include "paddle/fluid/inference/tensorrt/helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26
#include "paddle/fluid/platform/dynload/tensorrt.h"

namespace dy = paddle::platform::dynload;

class Logger : public nvinfer1::ILogger {
 public:
27 28
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    switch (severity) {
      case Severity::kINFO:
        LOG(INFO) << msg;
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }
};

class ScopedWeights {
 public:
48
  explicit ScopedWeights(float value) : value_(value) {
Y
Yan Chunwei 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62
    w.type = nvinfer1::DataType::kFLOAT;
    w.values = &value_;
    w.count = 1;
  }
  const nvinfer1::Weights& get() { return w; }

 private:
  float value_;
  nvinfer1::Weights w;
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
63
nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
64
  return static_cast<nvinfer1::IBuilder*>(
65
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
66
}
67
nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
68
  return static_cast<nvinfer1::IRuntime*>(
69
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
70 71 72 73 74 75 76 77 78
}

const char* kInputTensor = "input";
const char* kOutputTensor = "output";

// Creates a network to compute y = 2x + 3
nvinfer1::IHostMemory* CreateNetwork() {
  Logger logger;
  // Create the engine.
79
  nvinfer1::IBuilder* builder = createInferBuilder(&logger);
80
  auto config = builder->createBuilderConfig();
Y
Yan Chunwei 已提交
81 82 83
  ScopedWeights weights(2.);
  ScopedWeights bias(3.);

84
  nvinfer1::INetworkDefinition* network = builder->createNetworkV2(0U);
Y
Yan Chunwei 已提交
85
  // Add the input
86 87
  auto input = network->addInput(
      kInputTensor, nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 1, 1});
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97
  EXPECT_NE(input, nullptr);
  // Add the hidden layer.
  auto layer = network->addFullyConnected(*input, 1, weights.get(), bias.get());
  EXPECT_NE(layer, nullptr);
  // Mark the output.
  auto output = layer->getOutput(0);
  output->setName(kOutputTensor);
  network->markOutput(*output);
  // Build the engine.
  builder->setMaxBatchSize(1);
98 99
  config->setMaxWorkspaceSize(1 << 10);
  auto engine = builder->buildEngineWithConfig(*network, *config);
Y
Yan Chunwei 已提交
100 101 102 103 104 105 106 107 108
  EXPECT_NE(engine, nullptr);
  // Serialize the engine to create a model, then close.
  nvinfer1::IHostMemory* model = engine->serialize();
  network->destroy();
  engine->destroy();
  builder->destroy();
  return model;
}

109 110
void Execute(nvinfer1::IExecutionContext* context,
             const float* input,
Y
Yan Chunwei 已提交
111
             float* output) {
112
  const nvinfer1::ICudaEngine& engine = context->getEngine();
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120 121 122 123
  // Two binds, input and output
  ASSERT_EQ(engine.getNbBindings(), 2);
  const int input_index = engine.getBindingIndex(kInputTensor);
  const int output_index = engine.getBindingIndex(kOutputTensor);
  // Create GPU buffers and a stream
  void* buffers[2];
  ASSERT_EQ(0, cudaMalloc(&buffers[input_index], sizeof(float)));
  ASSERT_EQ(0, cudaMalloc(&buffers[output_index], sizeof(float)));
  cudaStream_t stream;
  ASSERT_EQ(0, cudaStreamCreate(&stream));
  // Copy the input to the GPU, execute the network, and copy the output back.
124 125 126 127 128 129
  ASSERT_EQ(0,
            cudaMemcpyAsync(buffers[input_index],
                            input,
                            sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream));
130
  context->enqueue(1, buffers, stream, nullptr);
131 132 133 134 135 136
  ASSERT_EQ(0,
            cudaMemcpyAsync(output,
                            buffers[output_index],
                            sizeof(float),
                            cudaMemcpyDeviceToHost,
                            stream));
Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
  cudaStreamSynchronize(stream);

  // Release the stream and the buffers
  cudaStreamDestroy(stream);
  ASSERT_EQ(0, cudaFree(buffers[input_index]));
  ASSERT_EQ(0, cudaFree(buffers[output_index]));
}

TEST(TensorrtTest, BasicFunction) {
  // Create the network serialized model.
  nvinfer1::IHostMemory* model = CreateNetwork();

  // Use the model to create an engine and an execution context.
  Logger logger;
151
  nvinfer1::IRuntime* runtime = createInferRuntime(&logger);
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159
  nvinfer1::ICudaEngine* engine =
      runtime->deserializeCudaEngine(model->data(), model->size(), nullptr);
  model->destroy();
  nvinfer1::IExecutionContext* context = engine->createExecutionContext();

  // Execute the network.
  float input = 1234;
  float output;
160
  Execute(context, &input, &output);
Y
Yan Chunwei 已提交
161 162 163 164 165 166 167
  EXPECT_EQ(output, input * 2 + 3);

  // Destroy the engine.
  context->destroy();
  engine->destroy();
  runtime->destroy();
}