device_context.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
11
#include "paddle/fluid/platform/device_context.h"
12

13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
#endif
22

Q
qijun 已提交
23 24 25
namespace paddle {
namespace platform {

D
dzhwinter 已提交
26 27
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
28
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
29 30 31 32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
Y
Yu Yang 已提交
35
  return it->second.get();
D
dzhwinter 已提交
36 37
}

C
chengduozh 已提交
38 39 40 41 42 43 44 45 46 47
const std::vector<const DeviceContext*>
DeviceContextPool::GetAllDeviceContexts() const {
  std::vector<const DeviceContext*> all_device_ctx;
  all_device_ctx.reserve(device_contexts_.size());
  for (auto& dev_ctx : device_contexts_) {
    all_device_ctx.emplace_back(dev_ctx.second.get());
  }
  return all_device_ctx;
}

D
dzhwinter 已提交
48 49 50
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
Y
Yu Yang 已提交
51
  using PtrType = std::unique_ptr<DeviceContext>;
52
  std::set<Place> set;
Y
Yu Yang 已提交
53 54 55 56 57 58
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
59
#ifdef PADDLE_WITH_MKLDNN
Y
Yu Yang 已提交
60 61
      device_contexts_.emplace(
          p, PtrType(new MKLDNNDeviceContext(boost::get<CPUPlace>(p))));
62
#else
Y
Yu Yang 已提交
63 64
      device_contexts_.emplace(
          p, PtrType(new CPUDeviceContext(boost::get<CPUPlace>(p))));
65
#endif
Y
Yu Yang 已提交
66
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
67
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
68 69
      device_contexts_.emplace(
          p, PtrType(new CUDADeviceContext(boost::get<CUDAPlace>(p))));
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76 77 78 79 80 81 82 83
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
      device_contexts_.emplace(
          p,
          PtrType(new CUDAPinnedDeviceContext(boost::get<CUDAPinnedPlace>(p))));
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
84 85 86 87 88
#endif
    }
  }
}

89 90 91 92
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
93
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
94 95 96 97 98 99 100
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
101
Place CPUDeviceContext::GetPlace() const { return place_; }
102

103
#ifdef PADDLE_WITH_CUDA
104

Q
init  
qijun 已提交
105 106 107 108 109 110 111
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
112
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
113 114 115 116 117 118 119 120 121 122 123 124
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
Q
qijun 已提交
125
    return paddle::memory::Alloc(place_, num_bytes);
Q
init  
qijun 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }

  void deallocate(void* buffer) const override {
    paddle::memory::Free(place_, buffer);
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
151
  CUDAPlace place_;
Q
init  
qijun 已提交
152 153
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
154
  mutable void* scratch_;
Q
init  
qijun 已提交
155 156 157
  mutable unsigned int* semaphore_;
};

158 159 160 161 162 163 164 165 166 167 168 169 170
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
      : workspace_(nullptr), workspace_len_(0), stream_(stream), place_(place) {
    PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
    PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
  }

  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

  void RunFunc(const std::function<void(void*)>& cudnn_func,
               size_t required_workspace_len) {
    std::lock_guard<std::mutex> lock(mtx_);
S
sneaxiy 已提交
171
    RunFuncImpl(cudnn_func, required_workspace_len);
172 173 174 175 176 177 178 179 180 181
  }

  ~CudnnHolder() {
    PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
    if (workspace_ != nullptr) {
      paddle::memory::Free(place_, workspace_);
    }
  }

 private:
S
sneaxiy 已提交
182 183 184 185 186 187 188 189 190 191
  std::mutex& Mutex() { return mtx_; }

  void RunFuncImpl(const std::function<void(void*)>& cudnn_func,
                   size_t required_workspace_len) {
    if (required_workspace_len > workspace_len_) {
      ReallocateWorkspace(required_workspace_len);
    }
    cudnn_func(workspace_);
  }

192 193 194 195 196 197 198 199 200
  void ReallocateWorkspace(size_t required_workspace_len) {
    if (required_workspace_len <= workspace_len_) {
      return;
    }
    if (workspace_ != nullptr) {
      // Maybe someone is using the current workspace
      PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
      paddle::memory::Free(place_, workspace_);
    }
F
fengjiayi 已提交
201
    workspace_ = paddle::memory::Alloc(place_, required_workspace_len);
202 203 204
    workspace_len_ = required_workspace_len;
  }

S
sneaxiy 已提交
205 206
  friend class CudnnWorkspaceHandle;

207 208 209 210 211 212 213 214 215 216
  cudnnHandle_t cudnn_handle_;
  void* workspace_;
  size_t workspace_len_;

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};

S
sneaxiy 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
CudnnWorkspaceHandle::CudnnWorkspaceHandle(CudnnHolder* holder)
    : holder_(holder) {}

void CudnnWorkspaceHandle::RunFunc(const std::function<void(void*)>& cudnn_func,
                                   size_t required_workspace_len) {
  // defer lock when the function is invoked first time
  BeginCallGuard();
  holder_->RunFuncImpl(cudnn_func, required_workspace_len);
}

void CudnnWorkspaceHandle::BeginCallGuard() {
  if (!guard_) {
    guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
  }
}

void CudnnWorkspaceHandle::EndCallGuard() { guard_.reset(); }

235 236
CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
237
  SetDeviceId(place_.device);
C
chengduo 已提交
238 239 240
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
241 242 243
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
244
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
245 246
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
247
  if (dynload::HasCUDNN()) {
248
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
249
  }
S
sneaxiy 已提交
250

C
chengduo 已提交
251 252 253 254 255 256 257 258 259 260
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

  LOG(INFO) << "device: " << place_.device
            << ", CUDA Capability: " << compute_capability_
            << ", Driver Version: " << driver_version_ / 1000 << "."
            << (driver_version_ % 100) / 10
            << ", Runtime Version: " << runtime_version_ / 1000 << "."
            << (runtime_version_ % 100) / 10;

S
sneaxiy 已提交
261
  callback_manager_.reset(new StreamCallbackManager(stream_));
262 263 264 265
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
266
  Wait();
S
sneaxiy 已提交
267
  WaitStreamCallback();
268
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
269 270
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
271
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
272 273
}

L
liaogang 已提交
274
Place CUDADeviceContext::GetPlace() const { return place_; }
275

L
liaogang 已提交
276
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
277
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
278 279 280
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
281
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
282
  return compute_capability_;
K
Kexin Zhao 已提交
283 284
}

285
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
286
  return multi_process_ * max_threads_per_mp_;
287 288
}

289 290 291 292
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

293
cublasHandle_t CUDADeviceContext::cublas_handle() const {
294 295 296
  return cublas_handle_;
}

297 298 299 300
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
301 302 303 304
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
}

305 306 307 308
void CUDADeviceContext::RunCudnnFuncWithWorkspace(
    const std::function<void(void*)>& cudnn_func, size_t workspace_len) const {
  cudnn_holder_->RunFunc(cudnn_func, workspace_len);
}
309

310
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
311

C
chengduoZH 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
326
#endif
Q
qijun 已提交
327

T
tensor-tang 已提交
328 329
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
330 331
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobs_() {
  p_blobs_.reset(new std::unordered_map<std::string, std::shared_ptr<void>>());
T
tensor-tang 已提交
332 333
}

334 335 336 337
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
  std::unordered_map<std::string, std::shared_ptr<void>>* p;
  p = p_blobs_.get();
T
tensor-tang 已提交
338

339
  auto it = p->find(name);
T
tensor-tang 已提交
340

341 342 343 344 345
  if (it == p->end()) {
    (*p)[name] = data;  // create new blob
  } else {
    it->second = data;  // set data to existing blob
  }
T
tensor-tang 已提交
346

347
  return;
T
tensor-tang 已提交
348 349
}

350 351 352 353
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
  std::unordered_map<std::string, std::shared_ptr<void>>* p;
  p = p_blobs_.get();
T
tensor-tang 已提交
354

355
  auto it = p->find(name);
T
tensor-tang 已提交
356

357 358
  if (it != p->end()) {
    return it->second;
T
tensor-tang 已提交
359
  }
360 361

  return nullptr;
T
tensor-tang 已提交
362 363 364 365
}

#endif

Q
qijun 已提交
366
}  // namespace platform
Q
qijun 已提交
367
}  // namespace paddle