communicator.h 16.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <ThreadPool.h>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <deque>
20
#include <map>
Q
Qiao Longfei 已提交
21 22
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
Q
Qiao Longfei 已提交
25
#include <utility>
Q
Qiao Longfei 已提交
26
#include <vector>
27
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
28 29 30

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
C
Chengmo 已提交
31 32
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
Q
Qiao Longfei 已提交
33
#include "paddle/fluid/operators/distributed/rpc_common.h"
C
Chengmo 已提交
34
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
35 36
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
37 38 39
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
T
tangwei12 已提交
40
#include "paddle/fluid/string/split.h"
Q
Qiao Longfei 已提交
41

42 43
DECLARE_bool(communicator_is_sgd_optimizer);

Q
Qiao Longfei 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
59 60 61 62 63 64 65
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
66 67 68 69
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
70 71 72 73 74 75 76
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
77 78 79 80 81
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
82
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
83 84
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
85
    cv_.notify_one();
Q
Qiao Longfei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
104
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
105 106
};

Q
Qiao Longfei 已提交
107 108 109 110
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

1
123malin 已提交
111
template <typename T>
Q
Qiao Longfei 已提交
112 113
inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
1
123malin 已提交
114
                      Scope* scope, bool merge_add = true) {
Q
Qiao Longfei 已提交
115 116 117 118 119 120
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
1
123malin 已提交
121 122
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims
            << "; merge add: " << merge_add;
Q
Qiao Longfei 已提交
123 124
    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
1
123malin 已提交
125
    out_t->mutable_data<T>(dims, cpu_place);
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132 133
    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
1
123malin 已提交
134 135
    math::SetConstant<paddle::platform::CPUDeviceContext, T> constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<T>(0));
Q
Qiao Longfei 已提交
136
    // sum all vars to out
1
123malin 已提交
137
    auto result = EigenVector<T>::Flatten(*out_t);
Q
Qiao Longfei 已提交
138 139
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
1
123malin 已提交
140
      auto in = EigenVector<T>::Flatten(in_t);
Q
Qiao Longfei 已提交
141 142
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
1
123malin 已提交
143
    if (!merge_add) {
144
      result.device(*cpu_ctx.eigen_device()) =
1
123malin 已提交
145
          result / static_cast<T>(vars.size());
146
    }
Q
Qiao Longfei 已提交
147 148 149 150
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
1
123malin 已提交
151
    out_slr->mutable_value()->mutable_data<T>({{}}, cpu_place);
Q
Qiao Longfei 已提交
152 153 154 155 156 157
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
1
123malin 已提交
158 159
    if (merge_add) {
      math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, T> merge_add;
160 161
      merge_add(dev_ctx, inputs, out_slr);
    } else {
1
123malin 已提交
162
      math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, T>
163 164 165 166
          merge_average;
      merge_average(dev_ctx, inputs, out_slr);
    }

Q
Qiao Longfei 已提交
167
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
1
123malin 已提交
168
            << " dims: " << slr0.value().dims() << "; merge add: " << merge_add;
Q
Qiao Longfei 已提交
169 170 171 172 173
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
174 175
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
176 177
class Communicator {
 public:
1
123malin 已提交
178
  Communicator();
179
  explicit Communicator(const std::map<std::string, std::string>& envs);
T
tangwei12 已提交
180
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
181

T
tangwei12 已提交
182 183 184
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
185

186 187
  virtual void Send(const std::vector<std::string>& var_names,
                    const std::vector<std::string>& var_tables,
188 189
                    const framework::Scope& scope) = 0;

T
tangwei12 已提交
190
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
191

192 193 194 195
  virtual void Barrier() {}
  virtual void BarrierTriggerDecrement() {}
  virtual void BarrierTriggerReset(int init_counter) {}

T
tangwei12 已提交
196 197
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
198
                        Scope* recv_scope) {}
T
tangwei12 已提交
199 200
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
201

T
tangwei12 已提交
202 203 204 205
  static Communicator* GetInstance() { return communicator_.get(); }
  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }
206 207
  template <typename T>
  static Communicator* InitInstance(
1
123malin 已提交
208
      const paddle::framework::ProgramDesc& program, Scope* recv_scope,
209
      const std::map<std::string, std::string>& envs) {
210
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
211
                   recv_scope, std::ref(envs));
212 213 214
    return communicator_.get();
  }

T
tangwei12 已提交
215 216
  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
1
123malin 已提交
217
                              Scope* recv_scope,
218
                              const std::map<std::string, std::string>& envs) {
T
tangwei12 已提交
219
    if (communicator_.get() == nullptr) {
220
      communicator_.reset(new T(std::ref(envs)));
T
tangwei12 已提交
221 222 223 224 225 226 227 228
      communicator_->InitImpl(program, recv_scope);
    }
  }

 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
229
  std::unordered_map<std::string, std::string> envs;
T
tangwei12 已提交
230 231
};

232
using SparseIdsMap =
C
Chengmo 已提交
233
    std::unordered_map<std::string, std::vector<std::unordered_set<int64_t>>>;
234

T
tangwei12 已提交
235 236
class AsyncCommunicator : public Communicator {
 public:
1
123malin 已提交
237
  AsyncCommunicator() : Communicator() {}
238 239 240 241 242 243 244 245 246 247 248 249
  explicit AsyncCommunicator(const std::map<std::string, std::string>& envs)
      : Communicator(envs) {
    independent_recv_thread_ = static_cast<bool>(
        std::stoi(envs.at("communicator_independent_recv_thread")));
    min_send_grad_num_before_recv_ =
        std::stoi(envs.at("communicator_min_send_grad_num_before_recv"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
    is_sgd_optimizer_ =
        static_cast<bool>(std::stoi(envs.at("communicator_is_sgd_optimizer")));
T
tangwei12 已提交
250
    VLOG(0) << "AsyncCommunicator Initialized";
251
  }
T
tangwei12 已提交
252 253 254 255 256
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Recv() override;
Q
Qiao Longfei 已提交
257
  void RecvAll();
T
tangwei12 已提交
258 259 260 261 262 263 264 265

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
266 267 268
  void SendThread();
  void RecvThread();

269 270
  void Send(const std::vector<std::string>& var_names,
            const std::vector<std::string>& var_tables,
271 272
            const framework::Scope& scope) override;

273 274 275 276 277 278 279 280
 private:
  int min_send_grad_num_before_recv_;
  int thread_pool_size_;
  int max_merge_var_num_;
  int send_wait_times_;
  int send_queue_size_;
  bool independent_recv_thread_;
  bool is_sgd_optimizer_;
281

T
tangwei12 已提交
282
 private:
Q
Qiao Longfei 已提交
283 284 285
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
286 287
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
288 289
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
290 291
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
292 293
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
294
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
295 296
};

297
class HalfAsyncCommunicator : public Communicator {
298
 public:
299 300 301 302 303 304 305
  HalfAsyncCommunicator() {}
  explicit HalfAsyncCommunicator(const std::map<std::string, std::string>& envs)
      : Communicator(envs) {
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
T
tangwei12 已提交
306
    VLOG(0) << "HalfAsyncCommunicator Initialized";
307 308
  }
  ~HalfAsyncCommunicator();
309 310 311
  void Start() override;
  void Stop() override;

312 313
  void Send(const std::vector<std::string>& var_names,
            const std::vector<std::string>& var_tables,
314 315 316 317
            const framework::Scope& scope) override;

  void Recv() override;

318 319 320 321 322 323
  void Barrier() override;
  void BarrierWeakUp();

  void BarrierTriggerDecrement() override;
  void BarrierTriggerReset(int initial_val) override;

324 325 326 327 328 329 330
  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

331
  void ConsumeThread();
T
tangwei12 已提交
332 333
  virtual void BarrierSend() {}
  virtual void BarrierRecv() {}
334

T
tangwei12 已提交
335
 protected:
336 337 338 339
  int max_merge_var_num_;
  int send_wait_times_;
  int thread_pool_size_;
  int send_queue_size_;
T
tangwei12 已提交
340
  int trainer_id_ = 0;
341

T
tangwei12 已提交
342
 protected:
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
  std::unique_ptr<std::thread> consume_thread_{nullptr};
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
  std::unique_ptr<::ThreadPool> consume_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};

  // mutex for Wait for barrier
  std::mutex barrier_mutex_;
  std::condition_variable barrier_cond_;
  std::atomic<int64_t> barrier_trigger_{0};
  std::atomic<int64_t> barrier_counter_{0};
};

T
tangwei12 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
class SyncCommunicator : public HalfAsyncCommunicator {
 public:
  SyncCommunicator() : HalfAsyncCommunicator() {}
  explicit SyncCommunicator(const std::map<std::string, std::string>& envs)
      : HalfAsyncCommunicator(envs) {
    trainer_id_ = std::stoi(envs.at("trainer_id"));
    auto pserver_strings = envs.at("pserver_endpoints");
    pserver_endpoints_ = paddle::string::Split(pserver_strings, ',');
    VLOG(0) << "SyncCommunicator Initialized";
  }
  ~SyncCommunicator();
  void BarrierSend();
  void BarrierRecv();

 private:
  std::vector<std::string> pserver_endpoints_{};
};

379 380 381 382 383 384 385 386 387
class GeoSgdCommunicator : public Communicator {
 public:
  GeoSgdCommunicator() : Communicator() {}
  explicit GeoSgdCommunicator(const std::map<std::string, std::string>& envs)
      : Communicator(envs) {
    geo_need_push_nums_ = std::stoi(envs.at("geo_need_push_nums"));
    trainer_nums_ = std::stoi(envs.at("geo_trainer_nums"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
T
tangwei12 已提交
388
    VLOG(0) << "GeoSgdCommunicator Initialized";
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  }

  ~GeoSgdCommunicator();

  void Start() override;
  void Stop() override;

  void Send(const std::vector<std::string>& var_names,
            const std::vector<std::string>& var_tables,
            const framework::Scope& scope) override;

  void Recv() override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

405 406 407 408
 private:
  void SendThread();
  std::unordered_set<int64_t> SparseIdsMerge(
      const std::vector<SparseIdsMap>& ids_send_vec,
C
Chengmo 已提交
409
      const std::string& var_name, const std::string& splited_var_name);
410

411 412
  void SendUpdateDenseVars(const std::string& var_name,
                           const std::string& splited_var_name);
413

414
  void SendUpdateSparseVars(const std::string& var_name,
C
Chengmo 已提交
415
                            const std::string& splited_var_name,
416
                            const std::unordered_set<int64_t>& ids_table);
C
Chengmo 已提交
417

418 419
  void RecvUpdateDenseVars(const std::string& var_name,
                           const std::string& splited_var_name);
C
Chengmo 已提交
420 421
  void RecvUpdateSparseVars(const std::string& var_name,
                            const std::string& splited_var_name);
422 423 424 425 426 427 428 429 430

  void GeoSgdDenseParamInit(framework::Scope* scope_x,
                            framework::Scope* scope_y,
                            const std::string var_name);

  void GeoSgdSparseParamInit(framework::Scope* scope_x,
                             framework::Scope* scope_y,
                             const std::string var_name);

C
Chengmo 已提交
431 432 433 434 435 436 437 438
  void RpcSend(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

  void RpcRecv(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

439 440 441 442 443 444 445 446 447 448 449 450 451
  const std::string VarToDeltaVar(const std::string var_name) {
    std::string delta_name = var_name;
    const std::string send_name = delta_name.append(".delta");
    return send_name;
  }

  const std::string DeltaVarToVar(const std::string var_name) {
    std::string origin_name = var_name;
    origin_name.erase(origin_name.find(".delta"), 6);
    const std::string param_name = origin_name;
    return param_name;
  }

C
Chengmo 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465
  size_t GetSplitedVarIndex(const std::string var_name,
                            const std::string splited_var_name) {
    size_t index = 0;
    for (size_t i = 0;
         i < send_varname_to_ctx_[var_name].splited_var_names.size(); i++) {
      if (send_varname_to_ctx_[var_name].splited_var_names[i] ==
          splited_var_name) {
        index = i;
        break;
      }
    }
    return index;
  }

466 467
 private:
  int trainer_nums_ = 1;
468 469 470 471 472
  int geo_need_push_nums_ = 100;
  int thread_pool_size_;
  int send_wait_times_;

 private:
473 474
  int send_var_nums_ = 0;

475 476
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

  // parameter for local training
  Scope* training_scope_;

  // parameter for delta calc and send
  std::shared_ptr<Scope> delta_scope_;

  // parameter for storage the pserver param after last recv
  std::shared_ptr<Scope> old_scope_;

  // parameter on pserver
  std::shared_ptr<Scope> pserver_scope_;

  // if var is sparse, using selected rows, bool=true
  std::unordered_map<std::string, bool> var_list_;
492 493 494 495 496

  std::shared_ptr<BlockingQueue<std::shared_ptr<SparseIdsMap>>>
      need_push_queue_;
  std::vector<SparseIdsMap> ids_send_vec_;

C
Chengmo 已提交
497
  std::unordered_map<std::string, std::vector<int64_t>> absolute_section_;
498
  std::unordered_map<std::string, int64_t> vars_first_dimension_;
C
Chengmo 已提交
499

500 501
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<std::thread> send_thread_{nullptr};
C
Chengmo 已提交
502 503

  size_t need_thread_nums_{0};
504 505
};

Q
Qiao Longfei 已提交
506 507 508
}  // namespace distributed
}  // namespace operators
}  // namespace paddle