api_custom_impl.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19 20 21
#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
22
#include "paddle/phi/core/compat/convert_utils.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
25 26 27
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
28
#include "paddle/phi/infermeta/unary.h"
29

30
#include "glog/logging.h"
31

32 33 34
namespace paddle {
namespace experimental {

35
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
36
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
37 38
  kernel_key_set.backend_set =
      kernel_key_set.backend_set | BackendSet(phi::TransToPhiBackend(place));
39
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
40
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
41 42
      "copy", kernel_key);

43 44
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
45 46 47

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

48
  auto dense_x = TensorToDenseTensor(x);
49 50

  Tensor out;
51 52 53 54 55 56 57 58 59
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
60

61
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
62
  (*kernel_fn)(*dev_ctx, *dense_x, place, blocking, kernel_out);
63 64 65 66

  return out;
}

67 68 69 70
std::vector<Tensor> split_impl(const Tensor& x,
                               const ScalarArray& num_or_sections,
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
71
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
72 73 74 75

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
76

77
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
97
  std::vector<phi::MetaTensor> meta_outs;
98 99 100
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
101 102
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
103
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
104 105
  }

106
  phi::SplitInferMeta(
107
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
108 109

  using kernel_signature = void (*)(const platform::DeviceContext&,
110 111 112 113
                                    const phi::DenseTensor&,
                                    const phi::ScalarArray&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
114 115 116
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
117 118
               phi::ScalarArray(num_or_sections),
               phi::Scalar(axis),
C
chentianyu03 已提交
119 120 121 122
               dense_outs);

  return out;
}
123

124 125
}  // namespace experimental
}  // namespace paddle