jit_code.h 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
tensor-tang 已提交
17
#include <string>
18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/fluid/operators/math/jit_gen.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;

T
tensor-tang 已提交
32 33
// function: vec = Operand(vec, vec) (maybe with relu)
typedef enum { mul = 0, add } operand_type;
34

T
tensor-tang 已提交
35
class VVVJitCode : public JitCode {
T
tensor-tang 已提交
36
 public:
T
tensor-tang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
  const char* name() const override {
    std::string base = "VVVJitCode";
    if (type_ == operand_type::mul) {
      base += "_Mul";
    } else if (type_ == operand_type::add) {
      base += "_Add";
    }
    base += (with_relu_ ? "_relu" : "");
    return base.c_str();
  }
  explicit VVVJitCode(int d, operand_type type, bool with_relu,
                      size_t code_size = 256 * 1024, void* code_ptr = nullptr)
      : JitCode(code_size, code_ptr),
        num_(d),
        type_(type),
        with_relu_(with_relu) {}
T
tensor-tang 已提交
53 54 55 56 57
  static bool init(int d);
  void generate() override;

 private:
  int num_;
T
tensor-tang 已提交
58
  operand_type type_;
T
tensor-tang 已提交
59
  bool with_relu_;
T
tensor-tang 已提交
60 61 62 63 64 65
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
  reg64_t param3{abi_param3};

  xmm_t xmm_src1 = xmm_t(0);
  xmm_t xmm_src2 = xmm_t(1);
T
tensor-tang 已提交
66 67
  xmm_t xmm_dst = xmm_t(1);
  xmm_t xmm_zero = xmm_t(2);
T
tensor-tang 已提交
68 69 70

  ymm_t ymm_src1 = ymm_t(0);
  ymm_t ymm_src2 = ymm_t(1);
T
tensor-tang 已提交
71 72
  ymm_t ymm_dst = ymm_t(1);
  ymm_t ymm_zero = ymm_t(2);
T
tensor-tang 已提交
73 74
};

75 76 77 78 79
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle