matmul_kernel_impl.h 17.6 KB
Newer Older
Z
zyfncg 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/math/blas.h"
18
#include "paddle/pten/kernels/funcs/complex_functors.h"
Z
zyfncg 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#include "paddle/pten/core/dense_tensor.h"

namespace pten {

static void GetBroadcastFromDims(const int x_ndim,
                                 const std::int64_t* x_dims,
                                 const int y_ndim,
                                 const std::int64_t* y_dims,
                                 std::int64_t* x_bd_dims,
                                 std::int64_t* y_bd_dims,
                                 std::int64_t* out_bd_dims) {
  const int ndim = (std::max)(x_ndim, y_ndim);
  std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1);
  std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1);
  std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim);
  std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim);

  for (int i = 0; i < ndim; ++i) {
    PADDLE_ENFORCE_EQ(
        x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1,
        true,
        paddle::platform::errors::InvalidArgument(
            "Input(X) and Input(Y) has error dim."
            "X_broadcast's shape[%s] must be equal to Y_broadcast's shape[%s],"
            "or X_broadcast's shape[%s] <= 1, or Y_broadcast's shape[%s] <= 1,"
            "But received X_broadcast's shape[%s] = [%s]"
            "received Y_broadcast's shape[%s] = [%s]",
            i,
            i,
            i,
            i,
            i,
            x_bd_dims[i],
            i,
            y_bd_dims[i]));
    if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) {
      out_bd_dims[i] = 0;
    } else {
      out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]);
    }
  }
}

static int64_t GetIndexMessage(const int n,
                               const int64_t* dims,
                               const int64_t* index) {
  int64_t sum = 0;
  for (int i = 0; i < n; ++i) {
    if (dims[i] > 1) {
      sum = sum * dims[i] + index[i];
    }
  }
  return sum;
}

static void IndexIncreaseFromDims(const int ndim,
                                  const int64_t* dims,
                                  int64_t* index) {
  for (int i = ndim - 1; i >= 0; --i) {
    ++index[i];
    if (index[i] >= dims[i]) {
      index[i] -= dims[i];
    } else {
      break;
    }
  }
}

88
template <typename Context, typename T>
89
void MatMulFunction(const Context& dev_ctx,
Z
zyfncg 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                    const DenseTensor& X,
                    const DenseTensor& Y,
                    const std::vector<std::int64_t>& x_dims,
                    const std::vector<std::int64_t>& y_dims,
                    DenseTensor* Out,
                    bool trans_x,
                    bool trans_y,
                    bool flag = false) {
  const int x_ndim = x_dims.size();
  const int y_ndim = y_dims.size();

  // Get data ptr
  const T* x_data = X.data<T>();
  const T* y_data = Y.data<T>();

105
  auto blas = paddle::operators::math::GetBlas<Context, T>(dev_ctx);
L
Linjie Chen 已提交
106

Z
zyfncg 已提交
107
  if (x_ndim == 1 && y_ndim == 1) {
L
Linjie Chen 已提交
108 109
    const int M = X.numel();
    const int N = Y.numel();
Z
zyfncg 已提交
110
    PADDLE_ENFORCE_EQ(
L
Linjie Chen 已提交
111 112
        M,
        N,
Z
zyfncg 已提交
113 114 115 116
        paddle::platform::errors::InvalidArgument(
            "X's numbers must be equal to Y's numbers,"
            "when X/Y's dims =1. But received X has [%d] elements,"
            "received Y has [%d] elements",
L
Linjie Chen 已提交
117 118
            M,
            N));
Z
zyfncg 已提交
119
    VLOG(3) << "MatMul's case 1";
120
    Out->Resize({1});
121
    dev_ctx.template Alloc<T>(Out);
L
Linjie Chen 已提交
122 123 124 125 126 127 128 129 130
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              1,
              1,
              M,
              static_cast<T>(1),
              y_data,
              x_data,
              static_cast<T>(flag),
131
              dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    return;
  }

  if (x_ndim == 1) {
    const int N = X.numel();
    if (trans_y) {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1],
                        N,
                        paddle::platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 1,
                            N,
                            y_ndim - 1,
                            y_dims[y_ndim - 1]));
    } else {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2],
                        N,
                        paddle::platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 2,
                            N,
                            y_ndim - 2,
                            y_dims[y_ndim - 2]));
    }
    std::vector<std::int64_t> out_dims(y_ndim - 1);
    if (trans_y) {
      std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin());
    } else {
      std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin());
      out_dims.back() = y_dims.back();
    }
167
    Out->ResizeAndAllocate(pten::framework::make_ddim(out_dims));
168
    dev_ctx.template Alloc<T>(Out);
Z
zyfncg 已提交
169 170 171 172 173 174 175 176 177 178
    if (trans_y) {
      const int M = Y.numel() / N;
      VLOG(3) << "MatMul's case 2";
      blas.GEMV(false,
                M,
                N,
                static_cast<T>(1),
                y_data,
                x_data,
                static_cast<T>(flag),
179
                dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
180 181 182 183 184 185 186 187 188 189 190 191
    } else {
      const int M = y_dims[y_ndim - 1];
      const int batch_size = Y.numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 3";
        blas.GEMV(true,
                  N,
                  M,
                  static_cast<T>(1),
                  y_data,
                  x_data,
                  static_cast<T>(flag),
192
                  dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
193 194 195 196 197 198 199 200 201 202 203
      } else {
        VLOG(3) << "MatMul's case 4";
        blas.BatchedGEMM(CblasTrans,
                         CblasNoTrans,
                         M,
                         1,
                         N,
                         static_cast<T>(1),
                         y_data,
                         x_data,
                         static_cast<T>(flag),
204
                         dev_ctx.template Alloc<T>(Out),
Z
zyfncg 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
                         batch_size,
                         M * N,
                         0);
      }
    }
    return;
  }

  if (y_ndim == 1) {
    const int N = Y.numel();
    if (trans_x) {
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 2],
                        N,
                        paddle::platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 2,
                            N,
                            x_ndim - 2,
                            x_dims[x_ndim - 2]));
    } else {
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 1],
                        N,
                        paddle::platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 1,
                            N,
                            x_ndim - 1,
                            x_dims[x_ndim - 1]));
    }
    std::vector<std::int64_t> out_dims(x_ndim - 1);
    if (trans_x) {
      std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin());
      out_dims.back() = x_dims.back();
    } else {
      std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin());
    }
245
    Out->ResizeAndAllocate(pten::framework::make_ddim(out_dims));
246
    dev_ctx.template Alloc<T>(Out);
Z
zyfncg 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259

    if (trans_x) {
      const int M = x_dims[x_ndim - 1];
      const int batch_size = X.numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 5";
        blas.GEMV(true,
                  N,
                  M,
                  static_cast<T>(1),
                  x_data,
                  y_data,
                  static_cast<T>(flag),
260
                  dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
261 262 263 264 265 266 267 268 269 270 271
      } else {
        VLOG(3) << "MatMul's case 6";
        blas.BatchedGEMM(CblasTrans,
                         CblasNoTrans,
                         M,
                         1,
                         N,
                         static_cast<T>(1),
                         x_data,
                         y_data,
                         static_cast<T>(flag),
272
                         dev_ctx.template Alloc<T>(Out),
Z
zyfncg 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286
                         batch_size,
                         M * N,
                         0);
      }
    } else {
      const int M = X.numel() / N;
      VLOG(3) << "MatMul's case 7";
      blas.GEMV(false,
                M,
                N,
                static_cast<T>(1),
                x_data,
                y_data,
                static_cast<T>(flag),
287
                dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    }
    return;
  }

  const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2];
  const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
  if (trans_y) {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1],
                      K,
                      paddle::platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 1,
                          K,
                          y_ndim - 1,
                          y_dims[y_ndim - 1]));
  } else {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2],
                      K,
                      paddle::platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 2,
                          K,
                          y_ndim - 2,
                          y_dims[y_ndim - 2]));
  }
  const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
  const int ndim = (std::max)(x_ndim, y_ndim);
  std::vector<std::int64_t> x_broadcast_dims(ndim);
  std::vector<std::int64_t> y_broadcast_dims(ndim);
  std::vector<std::int64_t> out_broadcast_dims(ndim);

  GetBroadcastFromDims(x_ndim - 2,
                       x_dims.data(),
                       y_ndim - 2,
                       y_dims.data(),
                       x_broadcast_dims.data(),
                       y_broadcast_dims.data(),
                       out_broadcast_dims.data());
  out_broadcast_dims[ndim - 2] = M;
  out_broadcast_dims[ndim - 1] = N;

333
  Out->ResizeAndAllocate(pten::framework::make_ddim(out_broadcast_dims));
334
  dev_ctx.template Alloc<T>(Out);
Z
zyfncg 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

  const int batch_dim = ndim - 2;
  // broadcast message
  const bool is_broadcast_dims =
      !std::equal(x_broadcast_dims.cbegin(),
                  x_broadcast_dims.cbegin() + batch_dim,
                  y_broadcast_dims.cbegin());

  const std::int64_t x_batch_size =
      std::accumulate(x_broadcast_dims.cbegin(),
                      x_broadcast_dims.cbegin() + batch_dim,
                      1LL,
                      std::multiplies<std::int64_t>());
  const std::int64_t y_batch_size =
      std::accumulate(y_broadcast_dims.cbegin(),
                      y_broadcast_dims.cbegin() + batch_dim,
                      1LL,
                      std::multiplies<std::int64_t>());
  const std::int64_t out_batch_size =
      std::accumulate(out_broadcast_dims.cbegin(),
                      out_broadcast_dims.cbegin() + batch_dim,
                      1LL,
                      std::multiplies<std::int64_t>());
  if (out_batch_size == 0) return;
  if (x_batch_size == 1 && y_batch_size == 1) {
    VLOG(3) << "MatMul's case 8";
    blas.GEMM(trans_x ? CblasTrans : CblasNoTrans,
              trans_y ? CblasTrans : CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              x_data,
              y_data,
              static_cast<T>(flag),
370
              dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
371 372 373 374 375 376 377 378 379 380
  } else if (x_batch_size == 1) {
    if (M == 1 && trans_y) {
      VLOG(3) << "MatMul's case 9";
      blas.GEMV(false,
                y_batch_size * N,
                K,
                static_cast<T>(1),
                y_data,
                x_data,
                static_cast<T>(flag),
381
                dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
382 383 384 385 386 387 388 389 390 391 392
    } else {
      VLOG(3) << "MatMul's case 10";
      blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
                       trans_y ? CblasTrans : CblasNoTrans,
                       M,
                       N,
                       K,
                       static_cast<T>(1),
                       x_data,
                       y_data,
                       static_cast<T>(flag),
393
                       dev_ctx.template Alloc<T>(Out),
Z
zyfncg 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                       out_batch_size,
                       0,
                       K * N);
    }
  } else if (y_batch_size == 1) {
    if (!trans_x) {
      VLOG(3) << "MatMul's case 11";
      blas.GEMM(CblasNoTrans,
                trans_y ? CblasTrans : CblasNoTrans,
                x_batch_size * M,
                N,
                K,
                static_cast<T>(1),
                x_data,
                y_data,
                static_cast<T>(flag),
410
                dev_ctx.template Alloc<T>(Out));
Z
zyfncg 已提交
411 412 413 414 415 416 417 418 419 420 421
    } else {
      VLOG(3) << "MatMul's case 12";
      blas.BatchedGEMM(CblasTrans,
                       trans_y ? CblasTrans : CblasNoTrans,
                       M,
                       N,
                       K,
                       static_cast<T>(1),
                       x_data,
                       y_data,
                       static_cast<T>(flag),
422
                       dev_ctx.template Alloc<T>(Out),
Z
zyfncg 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
                       out_batch_size,
                       M * K,
                       0);
    }
  } else if (!is_broadcast_dims) {
    VLOG(3) << "MatMul's case 13";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
                     trans_y ? CblasTrans : CblasNoTrans,
                     M,
                     N,
                     K,
                     static_cast<T>(1),
                     x_data,
                     y_data,
                     static_cast<T>(flag),
438
                     dev_ctx.template Alloc<T>(Out),
Z
zyfncg 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                     out_batch_size,
                     M * K,
                     K * N);
  } else {
    // in the case, can't use stridedgemm
    std::vector<const T*> x_ptr(out_batch_size);
    std::vector<const T*> y_ptr(out_batch_size);
    std::vector<T*> out_ptr(out_batch_size);
    std::vector<std::int64_t> index(batch_dim, 0);
    for (std::int64_t i = 0; i < out_batch_size; ++i) {
      // using the index to get offset
      const std::int64_t x_index =
          GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data());
      const std::int64_t y_index =
          GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data());

      x_ptr[i] = x_data + x_index * M * K;
      y_ptr[i] = y_data + y_index * K * N;
457
      out_ptr[i] = dev_ctx.template Alloc<T>(Out) + i * M * N;
Z
zyfncg 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
      IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data());
    }
    VLOG(3) << "MatMul's case 14";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
                     trans_y ? CblasTrans : CblasNoTrans,
                     M,
                     N,
                     K,
                     static_cast<T>(1),
                     x_ptr.data(),
                     y_ptr.data(),
                     static_cast<T>(flag),
                     out_ptr.data(),
                     out_batch_size);
  }
}

475
template <typename Context, typename T>
476
void MatMulFunction(const Context& dev_ctx,
Z
zyfncg 已提交
477 478 479 480 481 482 483 484
                    const DenseTensor& X,
                    const DenseTensor& Y,
                    DenseTensor* Out,
                    bool trans_x,
                    bool trans_y,
                    bool flag = false) {
  const std::vector<std::int64_t> x_dims = vectorize(X.dims());
  const std::vector<std::int64_t> y_dims = vectorize(Y.dims());
485
  MatMulFunction<Context, T>(
486
      dev_ctx, X, Y, x_dims, y_dims, Out, trans_x, trans_y, flag);
487 488 489
}

template <typename T, typename Context>
490
void MatmulKernel(const Context& dev_ctx,
491 492 493 494 495
                  const DenseTensor& x,
                  const DenseTensor& y,
                  bool transpose_x,
                  bool transpose_y,
                  DenseTensor* out) {
496
  PADDLE_ENFORCE_NE(pten::framework::product(x.dims()),
497 498 499 500
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "The Input(X) dims size must not be equal 0,"
                        " but reviced dims size is 0. "));
501
  PADDLE_ENFORCE_NE(pten::framework::product(y.dims()),
502 503 504 505
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "The Input(Y) dims size must not be equal 0,"
                        " but reviced dims size is 0. "));
506
  MatMulFunction<Context, T>(dev_ctx, x, y, out, transpose_x, transpose_y);
Z
zyfncg 已提交
507 508 509
}

}  // namespace pten