cumprod_op.cu 14.4 KB
Newer Older
H
hlygit66666 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <thrust/transform.h>
#include "paddle/fluid/operators/cumprod_op.h"
#include "paddle/fluid/operators/math/inclusive_scan.h"
#include "paddle/fluid/platform/for_range.h"
19
#include "paddle/pten/kernels/funcs/complex_functors.h"
H
hlygit66666 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

namespace paddle {
namespace operators {

template <typename T>
struct MultiplyFunctor {
  HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

template <typename T>
class CumprodOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<framework::Tensor>("X");
    auto *y = ctx.Output<framework::Tensor>("Out");
    auto dim = ctx.Attr<int>("dim");
    size_t outer_dim, mid_dim, inner_dim;
    GetCumprodDimInfo(x->dims(), dim, &outer_dim, &mid_dim, &inner_dim);

    const auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    const auto &dev_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
    math::InclusiveScan<T, MultiplyFunctor<T>>(
        x_data, y_data, outer_dim, mid_dim, inner_dim, static_cast<T>(1),
        MultiplyFunctor<T>(), /*reverse=*/false, dev_ctx);
  }
};

template <typename T>
struct IsZeroFunctor {
  HOSTDEVICE bool operator()(T x) const { return x == static_cast<T>(0); }
};

template <typename T>
struct CumprodGradFunctorExceptFirstZero {
  HOSTDEVICE CumprodGradFunctorExceptFirstZero(
      const T *x, const T *y, const T *dy_mul_y_reversed_cumsum,
      const uint8_t *zero_mask, size_t mid_dim, size_t inner_dim, T *dx,
      int64_t *first_zero_idx, T *x_filled_one)
      : x_(x),
        y_(y),
        dy_mul_y_reversed_cumsum_(dy_mul_y_reversed_cumsum),
        zero_mask_(zero_mask),
        mid_dim_(mid_dim),
        inner_dim_(inner_dim),
        dx_(dx),
        first_zero_idx_(first_zero_idx),
        x_filled_one_(x_filled_one) {}

  HOSTDEVICE void operator()(size_t idx) const {
    auto inner_idx = idx % inner_dim_;
    auto outer_idx = idx / (mid_dim_ * inner_dim_);
    auto mid_idx = (idx - inner_idx) / inner_dim_ % mid_dim_;
    auto mask = zero_mask_[idx];
    bool should_fill_one = true;

    if (mask == 0) {
      dx_[idx] = dy_mul_y_reversed_cumsum_[idx] / x_[idx];
      if (mid_idx == mid_dim_ - 1) {
        // record first zero position as -1, i.e., no zero
        first_zero_idx_[outer_idx * inner_dim_ + inner_idx] = -1;
      }
    } else if (mid_idx > 0) {                  // mask > 0
      if (zero_mask_[idx - inner_dim_] > 0) {  // not first zero
        dx_[idx] = 0;
        should_fill_one = false;
      } else {
        // idx is the first zero position, it should be recorded
        dx_[idx] = y_[idx - inner_dim_];
        first_zero_idx_[outer_idx * inner_dim_ + inner_idx] = mid_idx;
      }
    } else {  // the first zero position is index 0
      dx_[idx] = 1;
      first_zero_idx_[outer_idx * inner_dim_ + inner_idx] = 0;
    }

    x_filled_one_[idx] = should_fill_one ? 1 : x_[idx];
  }

 private:
  const T *x_;
  const T *y_;
  const T *dy_mul_y_reversed_cumsum_;
  const uint8_t *zero_mask_;
  size_t mid_dim_;
  size_t inner_dim_;
  T *dx_;
  int64_t *first_zero_idx_;
  T *x_filled_one_;
};

template <typename T>
struct FillFirstZeroPositionGradFunctor {
  HOSTDEVICE FillFirstZeroPositionGradFunctor(const int64_t *first_zero_idx,
                                              const T *grad_value,
                                              size_t mid_dim, size_t inner_dim,
                                              T *dx)
      : first_zero_idx_(first_zero_idx),
        grad_value_(grad_value),
        mid_dim_(mid_dim),
        inner_dim_(inner_dim),
        dx_(dx) {}

  HOSTDEVICE void operator()(size_t idx) const {
    auto outer_idx = idx / inner_dim_;
    auto inner_idx = idx % inner_dim_;
    auto mid_idx = first_zero_idx_[idx];
    if (mid_idx >= 0) {
      auto full_idx =
          outer_idx * mid_dim_ * inner_dim_ + mid_idx * inner_dim_ + inner_idx;
      dx_[full_idx] *= grad_value_[full_idx];
    }
  }

 private:
  const int64_t *first_zero_idx_;
  const T *grad_value_;
  size_t mid_dim_;
  size_t inner_dim_;
  T *dx_;
};

/*
Reference to
https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/ReduceOps.cpp
input: x, y, dL/dy
output: dL/dx
dL/dx[i] = sum{0<=j<n} (dL/dy[j])*(dy[j]/dx[i]) (1)
         = sum(0<=j<n} (dL/dy[j])*(d(x[0]*x[1]*...*x[j])/dx[i])
if x[i] != 0, dL/dx[i] = sum{i<=j<n} (dL/dy[j])*(y[j]/x[i]) (2)
if x[i] == 0, the formula(2) can not be applied directly.
Suppose k is the first index of zero element, the formula will be:
i > k, dL/dx[i] = 0;
i < k, dL/dx[i] = 1/x[i]*sum{i<=j<n} (dL/dy[j]*y[j])
i = k, dL/dx[i] = y[i-1]*sum{i<=j<n} (dL/dy[j])*(x[i+1]*...*x[j])

First, we will show the main resolution.
We need to judge the relationship between i (current index) and k (index
which corresponds to the first element of 0).
To mark the relationship, we now introduce zero_mask and we also need to
mark the index of the first zero element.
zero_mask = cummax(x[i] == 0);      //label whether x[i]==0 until the index.
zero_index = -1;                    //store the first zero element's index.
e.g. x = [1, 4, 5, 0, 2, 3, 0];
     zero_mask = [0, 0, 0, 1, 1, 1, 1];
     zero_index = 3;
When i < k, we need to calculate the result of sum{i<=j<n}(d_y[j]*y[j]), we can
use reversed cumsum to calculate it.
R = reversed_cumsum(dy[j]*y[j]);     //store the calculation result of the
sum{i<=j<n}(d_y[j]*y[j]) and x[k+1],x[k+2],...,x[j] along the index k+1 ~ j.
When i = k, we need to calculate the result of prod{i<w<j}(x[w]).
To calculate it, we introduce x_filled_one, which fill 1 before x[k+1] along
the index 0 ~ k.
e.g. x = [1, 4, 5, 0, 2, 3, 0];
     x_filled_one = [1, 1, 1, 1, 2, 3, 0];
Thus, we can use cumprod(x_filled_one[j]) to calculate the result of
prod{k<=w<j}(x[w]).

Then, we will show more detailed implementation.
for (int i = 0; i < numel; i++) {
    if (zero_mask[i] == 0) {       //case i < k
        dx[i] = R[i] / x[i];
        x_filled_one[i] = 1;
    } else {
        if (i == 0) {              //case i = k
            dx[i] = 1;
            zero_index = i;
            x_filled_one[i] = 1;
        } else {
            if (zero_mask[i-1] == 0) {    //case i = k
                dx[i] = y[i-1];
                zero_index = i;
                x_filled_one[i] = 1;
            } else {                  //case i > k
                dx[i] = 0;
                x_filled_one[i] = x[i];
            }
        }
    }
}
T = reversed_cumsum(dy[j]*cumprod(x_filled_one[j]));
if (zero_index != -1) {
    dx[zero_index] *= T[zero_index];
}
*/

template <typename T>
class CumprodGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<framework::Tensor>("X");
    const auto *y = ctx.Input<framework::Tensor>("Out");
    const auto *dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto dim = ctx.Attr<int>("dim");

    size_t outer_dim, mid_dim, inner_dim;
    GetCumprodDimInfo(x->dims(), dim, &outer_dim, &mid_dim, &inner_dim);
    if (outer_dim == 0 || mid_dim == 0 || inner_dim == 0) return;

    size_t numel = outer_dim * mid_dim * inner_dim;

    const auto *x_data = x->data<T>();
    const auto *y_data = y->data<T>();
    const auto *dy_data = dy->data<T>();

228
    auto place = ctx.GetPlace();
H
hlygit66666 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    const auto &dev_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
    auto *dx_data = dx->mutable_data<T>(place);

    // deal with complex
    const T *x_data_deal;
    const T *y_data_deal;
    memory::AllocationPtr x_conj;
    memory::AllocationPtr y_conj;
    if (framework::IsComplex<T>::value) {
      x_conj = memory::Alloc(place, numel * sizeof(T));
      auto *x_data_conj = reinterpret_cast<T *>(x_conj->ptr());
      y_conj = memory::Alloc(place, numel * sizeof(T));
      auto *y_data_conj = reinterpret_cast<T *>(y_conj->ptr());

      platform::ForRange<platform::CUDADeviceContext> for_range_x(dev_ctx,
                                                                  numel);
246
      pten::funcs::ConjFunctor<T> functor_x(x_data, numel, x_data_conj);
H
hlygit66666 已提交
247 248 249 250
      for_range_x(functor_x);

      platform::ForRange<platform::CUDADeviceContext> for_range_y(dev_ctx,
                                                                  numel);
251
      pten::funcs::ConjFunctor<T> functor_y(y_data, numel, y_data_conj);
H
hlygit66666 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
      for_range_y(functor_y);
      x_data_deal = x_data_conj;
      y_data_deal = y_data_conj;
    } else {
      x_data_deal = x_data;
      y_data_deal = y_data;
    }

// Step 1: find cummax-ed zero mask of x
#ifdef PADDLE_WITH_CUDA
    const auto &exec_policy = thrust::cuda::par.on(dev_ctx.stream());
#else
    const auto &exec_policy = thrust::hip::par.on(dev_ctx.stream());
#endif
    auto zero_mask_without_cummax =
        memory::Alloc(place, numel * sizeof(uint8_t));
    auto *zero_mask_without_cummax_data =
        reinterpret_cast<uint8_t *>(zero_mask_without_cummax->ptr());
    thrust::transform(
        exec_policy, thrust::device_pointer_cast(x_data_deal),
        thrust::device_pointer_cast(x_data_deal) + numel,
        thrust::device_pointer_cast(zero_mask_without_cummax_data),
        IsZeroFunctor<T>());

    auto zero_mask = memory::Alloc(place, numel * sizeof(uint8_t));
    auto *zero_mask_data = reinterpret_cast<uint8_t *>(zero_mask->ptr());
    math::InclusiveScan<uint8_t, cub::Max>(
        zero_mask_without_cummax_data, zero_mask_data, outer_dim, mid_dim,
        inner_dim, static_cast<uint8_t>(0), cub::Max(), /*reverse=*/false,
        dev_ctx);
    zero_mask_without_cummax = nullptr;

    // Step 2: calculate reversed cumsum(dy * y)
    auto dy_mul_y = memory::Alloc(place, numel * sizeof(T));
    auto *dy_mul_y_data = reinterpret_cast<T *>(dy_mul_y->ptr());
    thrust::transform(exec_policy, thrust::device_pointer_cast(dy_data),
                      thrust::device_pointer_cast(dy_data) + numel,
                      thrust::device_pointer_cast(y_data_deal),
                      thrust::device_pointer_cast(dy_mul_y_data),
                      MultiplyFunctor<T>());

    auto dy_mul_y_reversed_cumsum = memory::Alloc(place, numel * sizeof(T));
    auto *dy_mul_y_reversed_cumsum_data =
        reinterpret_cast<T *>(dy_mul_y_reversed_cumsum->ptr());
    math::InclusiveScan<T, cub::Sum>(
        dy_mul_y_data, dy_mul_y_reversed_cumsum_data, outer_dim, mid_dim,
        inner_dim, static_cast<T>(0), cub::Sum(), /*reverse=*/true, dev_ctx);

    // Step 3: calculate the gradient value except the first zero position.
    // The gradient value of the first zero position is filled with out[idx-1],
    // while the gradient value of the other positions are calculated out
    // completely. This functor also:
    //  (1) find the first zero index, i.e., first_zero_idx_data.
    //  (2) fill x_filled_one, which satifies
    //      x_filled_one[i] = x[i], i > pos
    //      x_filled_one[i] = 1, i <= pos
    auto first_zero_idx =
        memory::Alloc(place, outer_dim * inner_dim * sizeof(int64_t));
    auto *first_zero_idx_data =
        reinterpret_cast<int64_t *>(first_zero_idx->ptr());
    auto *x_filled_one_data = dy_mul_y_data;  // reuse former allocated memory
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, numel);
    CumprodGradFunctorExceptFirstZero<T> functor_except_first_zero(
        x_data_deal, y_data_deal, dy_mul_y_reversed_cumsum_data, zero_mask_data,
        mid_dim, inner_dim, dx_data, first_zero_idx_data, x_filled_one_data);
    for_range(functor_except_first_zero);

    // Step 4: calculate cumprod of x_filled_one
    auto *x_filled_one_cumprod_data =
        dy_mul_y_reversed_cumsum_data;  // reuse former allocated memory
    math::InclusiveScan<T, MultiplyFunctor<T>>(
        x_filled_one_data, x_filled_one_cumprod_data, outer_dim, mid_dim,
        inner_dim, static_cast<T>(1), MultiplyFunctor<T>(), /*reverse=*/false,
        dev_ctx);

    // Step 5: calculate reversed cumsum(dy * x_filled_one_cumprod)
    auto *dy_mul_x_filled_one_cumprod =
        dy_mul_y_data;  // reuse former allocated memory
    thrust::transform(exec_policy, thrust::device_pointer_cast(dy_data),
                      thrust::device_pointer_cast(dy_data) + numel,
                      thrust::device_pointer_cast(x_filled_one_cumprod_data),
                      thrust::device_pointer_cast(dy_mul_x_filled_one_cumprod),
                      MultiplyFunctor<T>());
    auto *dy_mul_x_filled_one_cumprod_reversed_cumsum =
        dy_mul_y_reversed_cumsum_data;  // reuse former allocated memory
    math::InclusiveScan<T, cub::Sum>(
        dy_mul_x_filled_one_cumprod,
        dy_mul_x_filled_one_cumprod_reversed_cumsum, outer_dim, mid_dim,
        inner_dim, static_cast<T>(0), cub::Sum(),
        /*reverse=*/true, dev_ctx);

    // Step 6: fill zero pos gradient value
    platform::ForRange<platform::CUDADeviceContext>
        for_range_fill_zero_pos_grad(dev_ctx, outer_dim * inner_dim);
    FillFirstZeroPositionGradFunctor<T> fill_first_zero_pos_grad_functor(
        first_zero_idx_data, dy_mul_x_filled_one_cumprod_reversed_cumsum,
        mid_dim, inner_dim, dx_data);
    for_range_fill_zero_pos_grad(fill_first_zero_pos_grad_functor);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    cumprod, ops::CumprodOpCUDAKernel<float>, ops::CumprodOpCUDAKernel<double>,
    ops::CumprodOpCUDAKernel<int>, ops::CumprodOpCUDAKernel<int64_t>,
    ops::CumprodOpCUDAKernel<paddle::platform::complex<float>>,
    ops::CumprodOpCUDAKernel<paddle::platform::complex<double>>);

REGISTER_OP_CUDA_KERNEL(
    cumprod_grad, ops::CumprodGradOpCUDAKernel<float>,
    ops::CumprodGradOpCUDAKernel<double>, ops::CumprodGradOpCUDAKernel<int>,
    ops::CumprodGradOpCUDAKernel<int64_t>,
    ops::CumprodGradOpCUDAKernel<paddle::platform::complex<float>>,
    ops::CumprodGradOpCUDAKernel<paddle::platform::complex<double>>);