“a0479f0be0f9c38bc340b6a023d9662dc64380c0”上不存在“docs/截止日期.md”
hybrid_parallel_inference.py 32.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
16
from paddle.fluid.framework import Block, Program
J
Jiabin Yang 已提交
17
from paddle.fluid.framework import _non_static_mode
18 19 20 21 22 23 24 25
import paddle.fluid.core as core
import paddle.distributed.fleet as fleet
import numpy as np


class HybridParallelInferenceHelper(object):
    """
    A helper class to split program for inference with hybrid parallelism.
26

27 28 29 30 31 32 33 34 35 36
    Args:
        startup_program (Program): the startup program.
        main_program (Program): the main program.
        num_mp (int): number of model parallel degree. Default ``1``.
        num_pp (int): number of pipeline parallel degree. Default ``1``.
        micro_batch_size (int): number of micro batch size. Default ``1``.
        beam_size (int): number of beam search size. Default ``1``.
        init_comm (bool): wheter if initilize comminication group. Default ``True``.
        role_maker (RoleMakerBase or subclass): user custom define RoleMakerBase.
            If ``role_maker==None``, then use PaddleCloudRoleMaker. Default ``None``.
37

38 39
    Returns:
        None.
40

41
    Write Paradigm:
42

43 44
    .. code-block:: bash
        :name: bash-example1
45

46 47 48 49 50 51 52 53
        # while op pattern
        with paddle.fluid.device_guard(f'{device}:all'):
            # init global cond
            max_len = layers.fill_constant(shape=[1], dtype="int64", value=10, force_cpu=False)
            step_idx = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False)
            cond_int = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False, name="cond_int")
            cond = layers.cast(step_idx < max_len, dtype="bool")
            while_op = layers.While(cond, is_test=True)
54

55 56
            # init global lod_tensor_array for generation task
            arr = layers.array_write(data, step_idx)
57

58 59 60 61 62 63 64 65
        with while_op.block():
            with paddle.fluid.device_guard(f'{device}:all'):
                # read data from global lod_tensor_array
                element_in_arr = layers.array_read(array=arr, i=step_idx)
                # write placehold data to global lod_tensor_array,
                # it need for send_v2 of lod_tensor_array
                layers.increment(x=step_idx, value=1.0, in_place=True)
                layers.array_write(element_in_arr, i=step_idx, array=arr)
66

67 68
            with paddle.fluid.device_guard(f'{device}:0'):
                ... some code
69

70 71
            with paddle.fluid.device_guard(f'{device}:1'):
                ... some code
72

73 74 75 76 77
            with paddle.fluid.device_guard(f'{device}:{num_pp-1}'):
                # generate some data in while block and write to global lod_tensor_array
                # that they are read in next while step.
                # we will using send_v2 to send global lod_tensor_array to other pipeline and sync
                layers.array_write(other_var, i=step_idx, array=arr)
78

79 80
                # update cond and assign to cond_int, we will sync cond_int
                layers.assign(layers.cast(cond, dtype="int32"), cond_int)
81

82 83 84
            with paddle.fluid.device_guard(f'{model._device}:all'):
                # the code below must at end of while block and exists in device:all
                layers.assign(layers.cast(cond_int, dtype='bool'), cond)
85

86 87 88
        with paddle.fluid.device_guard(f'{model._device}:all'):
            # use a empty lod_tensor_array to clear lod_tensor_array
            layers.assign(layers.create_array(data.dtype), arr)
89 90


91
    Examples:
92

93 94
    .. code-block:: python
        :name: code-example1
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        # required: distributed
        import os
        import numpy as np
        import paddle
        import paddle.fluid.layers as layers
        import paddle.distributed.fleet as fleet
        paddle.enable_static()

        nranks = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
        dev_id = int(os.getenv("FLAGS_selected_gpus", 0))

        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        if nranks > 1:
            dist_strategy = fleet.DistributedStrategy()
            dist_strategy.without_graph_optimization = True
            fleet.init(is_collective=True, strategy=dist_strategy)

        device = "gpu"

        with paddle.static.program_guard(main_program, startup_program):
            with paddle.fluid.device_guard(f'{device}:0'):
                X = paddle.static.data(name='X', shape=[None, 2], dtype='float32')

            with paddle.fluid.device_guard(f'{device}:all'):
                max_len = layers.fill_constant(
                    shape=[1], dtype="int64", value=5, force_cpu=False, name="n")
                step_idx = layers.fill_constant(
                    shape=[1], dtype="int64", value=0, force_cpu=False, name="i")

                data = layers.array_write(X, step_idx)

                cond_int = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False, name="cond_int")
                cond = layers.less_than(x=step_idx, y=max_len)
                while_op = layers.While(cond, is_test=True)

            with while_op.block():
                with paddle.fluid.device_guard(f'{device}:all'):
                    input = layers.array_read(array=data, i=step_idx)
                    layers.increment(x=step_idx, value=1.0, in_place=True)
                    layers.array_write(input, i=step_idx, array=data)

                with paddle.fluid.device_guard(f'{device}:0'):
                    param_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
                    weight1 = paddle.static.create_parameter(
                        shape=[2, 5], dtype='float32', attr=param_attr, is_bias=False)
                    hidden1 = paddle.matmul(input, weight1)

                with paddle.fluid.device_guard(f'{device}:1'):
                    param_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(2.0))
                    weight2 = paddle.static.create_parameter(
                        shape=[5, 2], dtype='float32', attr=param_attr, is_bias=False)
                    hidden2 = paddle.matmul(hidden1, weight2)

                    layers.array_write(hidden2, i=step_idx, array=data)

                    # update cond and assign to cond_int, we will sync cond_int
                    layers.less_than(x=step_idx, y=max_len, cond=cond)
                    layers.assign(layers.cast(cond, dtype="int32"), cond_int)

                with paddle.fluid.device_guard(f'{device}:all'):
                    # the code below must at end of while block and exists in device:all
                    layers.assign(layers.cast(cond_int, dtype='bool'), cond)

            with paddle.fluid.device_guard(f'{device}:all'):
                out = layers.create_array(data.dtype)
                layers.assign(data, out)

            with paddle.fluid.device_guard(f'{device}:all'):
                # use a empty lod_tensor_array to clear lod_tensor_array
                layers.assign(layers.create_array(data.dtype), data)

        helper = fleet.HybridParallelInferenceHelper(startup_program, main_program, micro_batch_size=2, num_pp=2, init_comm=nranks>1)
        helper.gen_infer_program(['array_write_0.out'], ['cond_int.tmp_0'])

        exe = paddle.static.Executor(paddle.CUDAPlace(dev_id))
        exe.run(startup_program)
175

176 177 178 179 180 181 182 183
        np.random.seed(2333)
        for step in range(5):
            init_data = np.random.uniform(low=0.0, high=1.0, size=[2, 2]).astype('float32')
            [res] = exe.run(main_program, feed={"X": init_data}, fetch_list=[out])
            print('-------- step', step, ' --------')
            print(res)
    """

184 185 186 187 188 189 190 191 192 193 194
    def __init__(
        self,
        startup_program,
        main_program,
        num_mp=1,
        num_pp=1,
        micro_batch_size=1,
        beam_size=1,
        init_comm=True,
        role_maker=None,
    ):
195 196 197 198 199 200 201 202 203 204

        assert isinstance(startup_program, Program)
        assert isinstance(main_program, Program)

        self._device = None
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
        assert self._device, "Only gpu and npu are supported."
J
Jiabin Yang 已提交
205
        assert not _non_static_mode(), "Only static mode is supported."
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()

        self._param_device_map = dict()

        self._pipeline_pair = []
        self._pipeline_pair_in_while = []
        self._pp_ring_map = dict()
        self.ring_id = 20  # Just a magic number

        self.micro_batch_size = micro_batch_size
        self.beam_size = beam_size
        self.init_comm = init_comm

        self._output_var_to_op = None
        self._input_var_to_op = None
        self._main_program = main_program
        self._startup_program = startup_program

        if role_maker is None:
            self.role_maker = fleet.base.role_maker.PaddleCloudRoleMaker(
230 231
                is_collective=True
            )
232 233
        else:
            if isinstance(role_maker, fleet.base.role_maker.RoleMakerBase):
234
                assert role_maker._is_collective
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                self.role_maker = role_maker

        # communication_group info
        self.mp_ring_id = 0
        self.global_ring_id = 1

        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        assert num_mp * num_pp == self.nranks
        self.num_pp = num_pp
        self.num_mp = num_mp

        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        arr = np.arange(0, self.num_pp * self.num_mp).reshape(
255 256
            [self.num_pp, self.num_mp]
        )
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        ipp, imp = np.where(arr == self.rank)
        ipp = ipp[0]
        imp = imp[0]
        self.mp_group = arr[ipp, :]
        self.pp_group = arr[:, imp]

        self._stage = ipp

    def _init_communication_group(self):
        dev_ids = []
        for pair in self._pipeline_pair:
            prev_id, cur_id = pair
            if prev_id not in dev_ids:
                dev_ids.append(prev_id)
            if cur_id not in dev_ids:
                dev_ids.append(cur_id)
        num_pp = len(dev_ids)
        num_pp = max(1, num_pp)
        assert num_pp == self.num_pp, 'num_pp: {}, self.num_pp: {}'.format(
276 277
            num_pp, self.num_pp
        )
278 279

        collective_helper = fleet.meta_optimizers.common.CollectiveHelper(
280 281
            self.role_maker, wait_port=False
        )
282 283

        # Create global rings
284 285 286 287 288 289 290 291 292 293
        collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            self.global_endpoints,
            self.global_rank,
            self.global_ring_id,
            True,
            self.global_ring_id,
            True,
        )
294 295 296 297 298

        # Create mp rings
        if self.num_mp > 1:
            mp_endpoints = [self.endpoints[mp_idx] for mp_idx in self.mp_group]
            mp_rank = [
299 300
                idx
                for idx, mp_idx in enumerate(self.mp_group)
301 302
                if mp_idx == self.rank
            ][0]
303 304 305 306 307 308 309 310 311 312
            collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                mp_endpoints,
                mp_rank,
                self.mp_ring_id,
                True,
                self.global_ring_id,
                True,
            )
313 314 315 316 317 318 319 320 321 322 323

        # Create pipeline rings
        if self.num_pp > 1:
            for pair in self._pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = self._pp_ring_map[pair_key]

                first_node = self.pp_group[pair[0]]
                second_node = self.pp_group[pair[1]]
                if self.rank != first_node and self.rank != second_node:
                    collective_helper._init_communicator(
324 325 326 327 328 329 330 331 332
                        self._startup_program,
                        None,
                        None,
                        None,
                        None,
                        False,
                        self.global_ring_id,
                        True,
                    )
333 334 335
                    continue

                pipeline_endpoints = [
336 337
                    self.endpoints[first_node],
                    self.endpoints[second_node],
338 339
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
340 341 342 343 344 345 346 347 348 349
                collective_helper._init_communicator(
                    self._startup_program,
                    self.current_endpoint,
                    pipeline_endpoints,
                    pipeline_rank,
                    ring_id,
                    False,
                    self.global_ring_id,
                    True,
                )
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
        output_var_to_op = defaultdict(list)
        # A map from var to op which takes it as input.
        input_var_to_op = defaultdict(list)

        for index, op in enumerate(block.ops):
            for var_name in op.input_arg_names:
                input_var_to_op[var_name].append([op, index])
            for var_name in op.output_arg_names:
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _update_param_device_map(self):
        """
        Get the device info for parameters.
        """
        params = [param.name for param in self._main_program.all_parameters()]
        for each_block in self._main_program.blocks:
            for op in each_block.ops:
                for var_name in op.input_arg_names:
376 377 378 379
                    if (
                        var_name not in params
                        or var_name in self._param_device_map
                    ):
380 381 382 383 384 385 386 387 388 389 390 391
                        continue
                    device = op.attr(self._op_device_key)

                    self._param_device_map[var_name] = device

    def _split_program(self, program, stage, block_idx):
        """
        Split a program and get the one with the given pipeline stage.

        Args:
            stage (int): pipeline stage
            block_idx (int): block index
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406
        Returns:
            used_var_names (set): used var names in block_idx block
        """

        used_var_names = set()
        block = program.block(block_idx)
        op_idx = 0
        for op in list(block.ops):
            op_stage = op.attr(self._op_device_key).split(':')[1]
            # Copy ops whose op_device set to "gpu:all" to all sections.
            if op_stage == "all" or int(op_stage) == stage:
                op_idx += 1
                if op.type == "while":
                    sub_block_id = int(op.attr('sub_block').id)
407
                    sub_used_var_names = self._split_program(
408 409
                        program, stage, sub_block_id
                    )
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

                    used_var_names.update(sub_used_var_names)

                    input_idxs = []
                    input_arg_names = op.input("X")
                    for i, name in enumerate(input_arg_names):
                        if name not in sub_used_var_names:
                            input_idxs.append(i)
                    if len(input_idxs) > 0:
                        for i in reversed(input_idxs):
                            input_arg_names.pop(i)
                        op.desc.set_input("X", input_arg_names)

                    output_idxs = []
                    output_arg_names = op.output("Out")
                    for i, name in enumerate(output_arg_names):
                        if name not in sub_used_var_names:
                            output_idxs.append(i)
                    if len(output_idxs) > 0:
                        for i in reversed(output_idxs):
                            output_arg_names.pop(i)
                        op.desc.set_output("Out", output_arg_names)

                for var_name in op.input_arg_names + op.output_arg_names:
                    used_var_names.add(var_name)
            else:
                block._remove_op(op_idx)

        for var_name in list(block.vars.keys()):
439
            if var_name not in used_var_names:
440 441 442 443
                block._remove_var(var_name)

        return used_var_names

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    #     def _find_post_op(self, index, var_name):
    #         """
    #         Find the post op that has variable named var_name as input.
    #         """
    #         # bugfix for uniform hybrid parallelism
    #         if '.cast_fp32' in var_name:
    #             var_name = var_name.replace('.cast_fp32', '')
    #         if '.cast_fp16' in var_name:
    #             var_name = var_name.replace('.cast_fp16', '')

    #         post_ops = self._input_var_to_op[var_name]
    #         if post_ops == None: return None
    #         result_op = None
    #         for post_op, post_idx in reversed(post_ops):
    #             if post_idx > index:
    #                 result_op = post_op
    #                 break
    #         return result_op
462 463 464 465 466 467 468

    def _find_prev_op(self, index, var_name):
        """
        Find the previous op of op with index that outputs
        variable named var_name.
        """
        prev_ops = self._output_var_to_op[var_name]
469 470
        if prev_ops == None:
            return None
471 472 473 474 475 476 477 478 479
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
                break
        return result_op

    def _add_op_device_attr(self, block):
        """
480
        Add op_device attrribute for ops in block that have
481
        not that attribute set.
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        Args:
            block (Block): the block to process.
        """
        assert isinstance(block, Block)

        # Ops should be copied to all pipeline stages.
        device_all_ops = [
            "create_py_reader",
            "read",
            "create_double_buffer_reader",
            "while",
        ]

        for op in block.ops:
            if op.type in device_all_ops:
                # We use "gpu:all" to represent an op should be put on all
                # pipeline stages, such as read ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
                op._set_attr(self._op_device_key, self._device + ":all")
            if op.type == "while":
                sub_block_id = op.attr('sub_block').id
                sub_block = block.program.block(sub_block_id)
                self._add_op_device_attr(sub_block)

    def _check_validation(self, block):
        """
509
        Check whether ops in a block have both the op_device and the
510 511 512 513 514 515
        op_role attributes set.
        """
        assert isinstance(block, Block)

        pre_stage_id = None
        for op in block.ops:
516 517 518
            assert op.has_attr(self._op_role_key), "{} has no {} set .".format(
                op.type, self._op_role_key
            )
519
            op_role = op.attr(self._op_role_key)
520 521 522
            assert op_role == int(
                self._op_role.Forward
            ), "Only forward is supported for inference."
523
            if not op._has_kernel(op.type):
524
                assert op.type in [
525 526 527
                    "while",
                    "conditional_block",
                ], "The only supported op without kernel is while."
528 529 530
                sub_block_id = op.attr('sub_block').id
                sub_block = block.program.block(sub_block_id)
                self._check_validation(sub_block)
531 532 533
            assert op.has_attr(self._op_device_key), "{} has no {} set.".format(
                op.type, self._op_device_key
            )
534 535

            device = op.attr(self._op_device_key)
536 537 538 539 540
            assert device, "{} has no {} set.".format(
                op.type, self._op_device_key
            )
            if device.split(':')[1] == "all":
                continue
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

            dev_type = device.split(':')[0]
            assert dev_type == self._device
            stage_id = int(device.split(':')[1])
            pre_stage_id = stage_id

    def _insert_sendrecv_ops_for_boundaries(self, block, is_while_block):
        """
        Insert a pair of send and recv ops for every two
        consecutive ops on different devices.
        """
        # A map from var to device where op takes it as input,
        # avoiding multiple send and recv ops.
        input_var_to_device = dict()

556 557 558
        extra_index_info = {
            'index': 0,
        }
559 560 561

        for index, op in enumerate(list(block.ops)):
            cur_device = op.attr(self._op_device_key)
562 563
            if cur_device.split(':')[-1] == "all":
                continue
564 565
            for var_name in op.input_arg_names:
                if not block.has_var(var_name) and block._find_var_recursive(
566 567
                    var_name
                ):
568 569 570
                    continue
                var = block.var(var_name)
                # skip data var
571 572
                if var.is_data:
                    continue
573 574 575 576 577 578 579 580 581 582
                prev_device = None
                generate_ops = self._output_var_to_op.get(var_name)
                if generate_ops is None:
                    if var_name not in self._param_device_map:
                        continue
                    prev_device = self._param_device_map[var_name]

                prev_op = self._find_prev_op(index, var_name)

                if not prev_device:
583 584 585
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
586 587 588 589

                if prev_device is None or prev_device.split(":")[-1] == "all":
                    continue

590 591
                if prev_device == cur_device:
                    continue
592 593 594 595 596 597

                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

598 599 600
                assert (
                    self._device == cur_device.split(':')[0]
                ), "More than one device type found."
601 602 603 604 605 606 607 608 609 610 611 612 613
                device_type = cur_device.split(':')[0] + ':'

                def _insert_send_recv(cur_id, prev_id):
                    assert cur_id > prev_id
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
614 615
                            (cur_dev, prev_dev)
                        )
616 617 618 619 620 621 622 623
                        return

                    assert cur_id - prev_id == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
                    var = block.vars[var_name]
                    pair = (prev_id, cur_id)
624 625 626 627
                    if (
                        is_while_block
                        and pair not in self._pipeline_pair_in_while
                    ):
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
                        self._pipeline_pair_in_while.append(pair)

                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]

                    block._insert_op_without_sync(
                        index=index + extra_index_info['index'],
                        type='send_v2',
                        inputs={'X': var},
                        attrs={
                            self._op_device_key: prev_dev,
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': 1,
649 650 651
                            'ring_id': ring_id,
                        },
                    )
652 653 654 655
                    extra_index_info['index'] += 1
                    var_shape = list(var.shape)
                    if var_shape[0] < 0:
                        if is_while_block:
656 657 658
                            var_shape[0] = (
                                self.micro_batch_size * self.beam_size
                            )
659 660 661 662 663 664 665 666 667 668 669 670 671 672
                        else:
                            var_shape[0] = self.micro_batch_size

                    block._insert_op_without_sync(
                        index=index + extra_index_info['index'],
                        type='recv_v2',
                        outputs={'Out': [var]},
                        attrs={
                            'out_shape': var_shape,
                            'dtype': var.dtype,
                            self._op_device_key: cur_dev,
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': 0,
673 674 675
                            'ring_id': ring_id,
                        },
                    )
676 677
                    extra_index_info['index'] += 1

678 679 680 681
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
682 683 684
        block._sync_with_cpp()

    def _insert_sendrecv_ops_in_while_block(
685 686 687 688 689 690
        self,
        block,
        sync_in_while_lastpp2firstpp_var_names,
        sync_in_while_var_names,
        stage,
    ):
691 692 693 694 695 696 697 698 699 700 701 702 703 704
        dev_ids = []
        for pair in self._pipeline_pair_in_while:
            prev_id, cur_id = pair
            if prev_id not in dev_ids:
                dev_ids.append(prev_id)
            if cur_id not in dev_ids:
                dev_ids.append(cur_id)

        if len(dev_ids) == 0:
            return

        first_id = min(dev_ids)
        last_id = max(dev_ids)

705 706 707
        assert len(block.ops) > 2, (
            "It must have more than 2 ops in while sub block, "
            "layers.assign(layers.cast(cond_int, dtype='bool'), cond) must at end of while block, "
708
            "because nccl cannot send bool dtype var"
709
        )
710 711 712
        index = len(block.ops) - 2

        for prev_id in dev_ids:
713 714
            if prev_id == cur_id:
                continue
715 716 717 718 719 720 721 722 723 724 725 726 727 728
            assert cur_id > prev_id

            pair = (prev_id, cur_id)
            # 1000 is just a magic number
            pair_key = prev_id * 1000 + cur_id
            if pair not in self._pipeline_pair:
                self._pipeline_pair.append(pair)
                self._pp_ring_map[pair_key] = self.ring_id
                ring_id = self.ring_id
                self.ring_id += 1
            else:
                ring_id = self._pp_ring_map[pair_key]

            if cur_id == last_id and prev_id == first_id:
729 730 731 732
                var_names = (
                    sync_in_while_lastpp2firstpp_var_names
                    + sync_in_while_var_names
                )
733 734 735 736 737 738 739 740 741 742 743
            else:
                var_names = sync_in_while_var_names

            for var_name in var_names:
                var = block._var_recursive(var_name)
                if stage == cur_id:
                    block._insert_op_without_sync(
                        index=index,
                        type='send_v2',
                        inputs={'X': var},
                        attrs={
744 745 746
                            self._op_device_key: self._device
                            + ':'
                            + str(cur_id),
747 748 749
                            self._op_role_key: int(self._op_role.Forward),
                            'use_calc_stream': True,
                            'peer': 0,
750 751 752
                            'ring_id': ring_id,
                        },
                    )
753 754
                else:
                    var_shape = list(var.shape)
755 756
                    print(var_name)
                    if len(var.shape) > 0:
757 758 759 760 761
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
762 763 764 765 766 767 768
                    block._insert_op_without_sync(
                        index=index,
                        type='recv_v2',
                        outputs={'Out': [var]},
                        attrs={
                            'out_shape': var_shape,
                            'dtype': var.dtype,
769 770 771
                            self._op_device_key: self._device
                            + ':'
                            + str(prev_id),
772 773 774
                            self._op_role_key: int(self._op_role.Forward),
                            'use_calc_stream': True,
                            'peer': 1,
775 776 777
                            'ring_id': ring_id,
                        },
                    )
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
                index += 1
        block._sync_with_cpp()

    def _get_while_block(self):
        """
        Get the while sub-block.
        """
        main_block = self._main_program.global_block()
        num_while = 0
        sub_block_id = None
        for op in main_block.ops:
            assert num_while < 2, "More than one while op found."
            if op.type == 'while':
                sub_block_id = op.attr('sub_block').id
                num_while += 1
793 794
        if sub_block_id:
            return op, self._main_program.block(sub_block_id)
795 796
        return None, None

797 798 799 800 801 802
    def gen_infer_program(
        self,
        sync_in_while_lastpp2firstpp_var_names=None,
        sync_in_while_var_names=None,
        debug=False,
    ):
803 804 805
        """
        Generate inference program.
        Params:
806
            sync_in_while_lastpp2firstpp_var_names (list(str)): the vars in the last pipeline
807 808 809 810 811 812 813 814 815
                that need to send var to first pipeline and exclude bool dtype var
            sync_in_while_var_names (list(str)): the vars sync among all pipeline in while block
                e.g cond. Note that cond cannot be bool dtype.
            debug (bool): the flag indicate debug
        """
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        if debug:
816
            with open('main_program.txt', 'w') as f:
817
                f.write(str(self._main_program))
818
            with open('startup_program.txt', 'w') as f:
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                f.write(str(self._startup_program))

        # step1: add op_device attribute for all ops
        self._add_op_device_attr(startup_block)
        self._check_validation(startup_block)
        self._add_op_device_attr(main_block)
        self._check_validation(main_block)

        # step2: add send/recv ops
        self._update_param_device_map()
        # step2.1: add send/recv for main_block
        out_var_to_op, in_var_to_op = self._get_input_output_info(main_block)
        self._output_var_to_op = out_var_to_op
        self._input_var_to_op = in_var_to_op
        self._insert_sendrecv_ops_for_boundaries(main_block, False)

        # step2.2: add send/recv for while_block
        while_op, while_block = self._get_while_block()
        if while_block:
            out_var_to_op, in_var_to_op = self._get_input_output_info(
839 840
                while_block
            )
841 842 843 844 845 846
            self._output_var_to_op = out_var_to_op
            self._input_var_to_op = in_var_to_op

            self._insert_sendrecv_ops_for_boundaries(while_block, True)

            self._insert_sendrecv_ops_in_while_block(
847 848 849 850 851
                while_block,
                sync_in_while_lastpp2firstpp_var_names,
                sync_in_while_var_names,
                self._stage,
            )
852 853 854 855 856 857 858 859 860 861 862 863 864

        # step3: split programs
        self._split_program(self._startup_program, self._stage, 0)
        self._split_program(self._main_program, self._stage, 0)

        if debug:
            with open(f'main_program.txt.{self.rank}', 'w') as f:
                f.write(str(self._main_program))
            with open(f'startup_program.txt.{self.rank}', 'w') as f:
                f.write(str(self._startup_program))

        if self.init_comm:
            self._init_communication_group()