rnn_op.h 86.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>

H
hong 已提交
19
#include "paddle/fluid/framework/generator.h"
20 21 22 23 24 25
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/operators/unique_op.h"
#include "paddle/fluid/operators/utils.h"
26
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
27 28 29
#include "paddle/phi/kernels/funcs/detail/activation_functions.h"
#include "paddle/phi/kernels/funcs/gru_compute.h"
#include "paddle/phi/kernels/funcs/lstm_compute.h"
30
#include "paddle/phi/kernels/funcs/math_function.h"
31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
using TensorList = std::vector<framework::Tensor>;

H
hong 已提交
39 40 41 42 43 44 45 46
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define DEFINE_MODE_DETECTOR(MODE_NAME, MODE_STR)                      \
  inline bool is_##MODE_NAME(const framework::ExecutionContext& ctx) { \
    const std::string& mode = ctx.Attr<std::string>("mode");           \
    return mode == #MODE_STR;                                          \
  }

DEFINE_MODE_DETECTOR(lstm, LSTM);
DEFINE_MODE_DETECTOR(gru, GRU);
DEFINE_MODE_DETECTOR(rnn_relu, RNN_RELU);
DEFINE_MODE_DETECTOR(rnn_tanh, RNN_TANH);

void SwapPoniter(Tensor** a, Tensor** b) {
  Tensor* c = *a;
  *a = *b;
  *b = c;
}

template <typename T>
void create_mask_matrix(const framework::ExecutionContext& context,
                        const Tensor* sequence_length, Tensor* mask_matrix,
                        const bool& is_reverse, int* min_seq_len) {
  const auto& seq_len_vec = GetDataFromTensor<int>(sequence_length);
  const int& table_width = mask_matrix->dims()[0];
  Tensor temp;
71
  temp.Resize(phi::make_ddim({mask_matrix->dims()[1], mask_matrix->dims()[0]}));
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  T* data_temp = temp.mutable_data<T>(context.GetPlace());
  std::fill(data_temp, data_temp + mask_matrix->numel(), static_cast<T>(1.0));
  *min_seq_len = table_width;
  for (unsigned int i = 0; i < seq_len_vec.size(); i++) {
    // reset the mask matrix
    *min_seq_len = std::min(seq_len_vec[i], *min_seq_len);
    if (seq_len_vec[i] == table_width) {
      continue;
    }
    if (is_reverse) {
      std::fill(data_temp + i * table_width,
                data_temp + (i + 1) * table_width - seq_len_vec[i],
                static_cast<T>(0));
    } else {
      std::fill(data_temp + i * table_width + seq_len_vec[i],
                data_temp + (i + 1) * table_width, static_cast<T>(0));
    }
  }
  mask_matrix->mutable_data<T>(context.GetPlace());
  std::vector<int> trans_vec;
  trans_vec.emplace_back(1);
  trans_vec.emplace_back(0);
  auto& dev_ctx = context.template device_context<platform::CPUDeviceContext>();
  TransCompute<platform::CPUDeviceContext, T>(2, dev_ctx, temp, mask_matrix,
                                              trans_vec);
}

template <typename T>
struct Cell {
  virtual ~Cell() {}
  virtual void operator()(const platform::CPUDeviceContext* device_ctx,
                          Tensor* input, const Tensor* weight_hh,
                          const Tensor* init_h, const Tensor* init_c,
                          Tensor* last_h, Tensor* last_c, Tensor* last_c_act,
                          Tensor* output, const Tensor* bias_hh,
                          Tensor* weight_hh_gru) const {}
};

template <typename T, template <typename> class EigenActivationFunctor,
F
Feiyu Chan 已提交
111
          phi::funcs::detail::ActivationType act_type>
112 113 114 115 116 117
struct SimpleRNNCell : Cell<T> {
  void operator()(const platform::CPUDeviceContext* device_ctx, Tensor* input,
                  const Tensor* weight_hh, const Tensor* init_h,
                  const Tensor* init_c, Tensor* last_h, Tensor* last_c,
                  Tensor* last_c_act, Tensor* output, const Tensor* bias_hh,
                  Tensor* weight_hh_gru) const override {
118
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(*device_ctx);
119
    auto mat_dim_a =
120
        phi::funcs::CreateMatrixDescriptor(init_h->dims(), 0, false);
121
    auto mat_dim_b =
122
        phi::funcs::CreateMatrixDescriptor(weight_hh->dims(), 0, true);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    mat_dim_a.height_ *= mat_dim_a.batch_size_;
    mat_dim_a.batch_size_ = 0;
    // convert the batch matmul to matmul, this operator could be speed faster
    blas.MatMul(*init_h, mat_dim_a, *weight_hh, mat_dim_b, static_cast<T>(1.0),
                input, static_cast<T>(1.0));
    auto z = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(input, "Input", "z", "Activation"));
    auto hidden = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(output, "Output", "hidden", "Activation"));

    auto* place = device_ctx->eigen_device();
    EigenActivationFunctor<T> functor;
    functor(*place, z, hidden);
  }
};

template <typename T>
struct GRUCell : Cell<T> {
  void operator()(const platform::CPUDeviceContext* device_ctx, Tensor* input,
                  const Tensor* weight_hh, const Tensor* init_h,
                  const Tensor* init_c, Tensor* last_h, Tensor* last_c,
                  Tensor* last_c_act, Tensor* output, const Tensor* bias_hh,
                  Tensor* weight_hh_gru) const override {
146
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(*device_ctx);
147
    auto mat_dim_a =
148
        phi::funcs::CreateMatrixDescriptor(init_h->dims(), 0, false);
149
    auto mat_dim_b =
150
        phi::funcs::CreateMatrixDescriptor(weight_hh_gru->dims(), 0, true);
151 152 153 154 155 156 157 158
    mat_dim_a.height_ *= mat_dim_a.batch_size_;
    mat_dim_a.batch_size_ = 0;
    // convert the batch matmul to matmul, this operator could be speed faster
    blas.MatMul(*init_h, mat_dim_a, *weight_hh_gru, mat_dim_b,
                static_cast<T>(1.0), input, static_cast<T>(1.0));
    size_t frame_size = init_h->dims()[2];
    size_t batch_size = init_h->dims()[1];

F
Feiyu Chan 已提交
159
    phi::funcs::GRUMetaValue<T> gru_value;
160 161 162 163 164 165 166 167 168
    gru_value.gate_weight = weight_hh->data<T>();
    gru_value.state_weight = weight_hh->data<T>() + 2 * frame_size * frame_size;
    gru_value.reset_bias = bias_hh->data<T>() + 2 * frame_size;

    gru_value.gate_value = input->data<T>();
    gru_value.reset_output_value = last_c->data<T>();
    gru_value.output_value = output->data<T>();
    gru_value.prev_out_value = init_h->data<T>();

F
Feiyu Chan 已提交
169 170
    auto gate_act = phi::funcs::detail::GetActivationType("sigmoid_v2");
    auto cand_act = phi::funcs::detail::GetActivationType("tanh_v2");
171

F
Feiyu Chan 已提交
172
    phi::funcs::GRUUnitFunctorV2<platform::CPUDeviceContext, T>::compute(
173 174 175 176 177 178 179 180 181 182 183
        *device_ctx, gru_value, frame_size, batch_size, cand_act, gate_act);
  }
};

template <typename T>
struct LSTMCell : Cell<T> {
  void operator()(const platform::CPUDeviceContext* device_ctx, Tensor* input,
                  const Tensor* weight_hh, const Tensor* init_h,
                  const Tensor* init_c, Tensor* last_h, Tensor* last_c,
                  Tensor* last_c_act, Tensor* output, const Tensor* bias_hh,
                  Tensor* weight_hh_gru) const override {
184
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(*device_ctx);
185
    auto mat_dim_a =
186
        phi::funcs::CreateMatrixDescriptor(init_h->dims(), 0, false);
187
    auto mat_dim_b =
188
        phi::funcs::CreateMatrixDescriptor(weight_hh->dims(), 0, true);
189 190 191 192 193 194
    mat_dim_a.height_ *= mat_dim_a.batch_size_;
    mat_dim_a.batch_size_ = 0;
    // convert the batch matmul to matmul, this operator could be speed faster
    blas.MatMul(*init_h, mat_dim_a, *weight_hh, mat_dim_b, static_cast<T>(1.0),
                input, static_cast<T>(1.0));

F
Feiyu Chan 已提交
195
    phi::funcs::LstmMetaValue<T> lstm_value;
196 197 198 199
    lstm_value.check_ig = nullptr;
    lstm_value.check_fg = nullptr;
    lstm_value.check_og = nullptr;

F
Feiyu Chan 已提交
200 201 202
    auto gate_act = phi::funcs::detail::GetActivationType("sigmoid_v2");
    auto cell_act = phi::funcs::detail::GetActivationType("tanh_v2");
    auto cand_act = phi::funcs::detail::GetActivationType("tanh_v2");
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    size_t frame_size = init_h->dims()[2];
    size_t batch_size = init_h->dims()[1];

    Tensor cell_pre_act;
    if (last_c_act == nullptr) { /* is test */
      cell_pre_act.mutable_data<T>(init_h->dims(), device_ctx->GetPlace());
      last_c_act = &cell_pre_act;
    }

    lstm_value.prev_state_value = init_c->data<T>();
    lstm_value.gate_value = input->data<T>();
    lstm_value.output_value = output->data<T>();
    lstm_value.state_value = last_c->data<T>();
    lstm_value.state_active_value = last_c_act->data<T>();
    T cell_clip = 0.0;
F
Feiyu Chan 已提交
219
    phi::funcs::LstmUnitFunctor<platform::CPUDeviceContext, T>::compute(
220 221 222 223 224
        *device_ctx, lstm_value, frame_size, batch_size, cell_clip, gate_act,
        cell_act, cand_act, false);
  }
};

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
template <typename T>
void dropout_helper(const framework::ExecutionContext& context, Tensor* x,
                    Tensor* y, const Tensor* mask, const float& dropout_prob) {
  auto& place = *context.template device_context<platform::CPUDeviceContext>()
                     .eigen_device();
  auto dropout_mask = EigenVector<uint8_t>::Flatten(*mask);
  auto in = EigenVector<T>::Flatten(*x);
  auto out = EigenVector<T>::Flatten(*y);
  if (dropout_prob == 1.0f) {
    out.device(place) = static_cast<T>(0) * in;
  } else {
    out.device(place) =
        in * dropout_mask.cast<T>() / static_cast<T>(1.0f - dropout_prob);
  }
}

241 242
template <typename T>
void dropout_cpu_function_inplace(const framework::ExecutionContext& context,
243
                                  Tensor* x, Tensor* y, Tensor* mask,
244
                                  const float& dropout_prob,
245
                                  const int& seed_number, bool is_test,
246 247 248 249
                                  bool* is_has_reset) {
  if (is_test) {
    return;
  }
250
  size_t size = phi::product(x->dims());
251 252 253 254
  auto* mask_data = mask->data<uint8_t>();
  if (!(*is_has_reset)) {
    // Special case when dropout_prob is 1.0
    if (dropout_prob == 1.0f) {
255 256 257 258 259 260 261 262 263 264
      std::fill(mask_data, mask_data + size, static_cast<uint8_t>(0));
    } else {
      auto engine = framework::GetCPURandomEngine(seed_number);
      std::uniform_real_distribution<float> dist(0, 1);
      for (size_t i = 0; i < size; ++i) {
        if (dist(*engine) < dropout_prob) {
          mask_data[i] = 0;
        } else {
          mask_data[i] = 1;
        }
265 266 267 268
      }
    }
    *is_has_reset = true;
  }
269
  dropout_helper<T>(context, x, y, mask, dropout_prob);
270 271 272 273 274 275
}

template <typename T>
void dropout_cpu_grad_function_inplace(
    const framework::ExecutionContext& context, Tensor* grad_x,
    const Tensor* mask, const float& dropout_prob) {
276
  dropout_helper<T>(context, grad_x, grad_x, mask, dropout_prob);
277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

template <typename T, typename CellType>
struct Layer {
  explicit Layer(const CellType& cell) : cell_(cell) {}
  virtual ~Layer() {}
  void preprocess(const framework::ExecutionContext& context,
                  const Tensor* input, const Tensor& weight,
                  const Tensor& bias_ih, const Tensor& bias_hh,
                  Tensor* cache_input, bool is_test) {
    // crate the temp input for the X * W_ih^T + Bias_ih
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    const int& hidden_size = weight.dims()[0];
291
    cache_input->Resize(
292
        phi::make_ddim({input->dims()[0], input->dims()[1], hidden_size}));
293 294 295
    if (is_test) {
      cache_input->mutable_data<T>(context.GetPlace());
    }
296
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(dev_ctx);
297
    auto mat_dim_a =
298 299
        phi::funcs::CreateMatrixDescriptor(input->dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(weight.dims(), 0, true);
300 301 302 303 304 305
    // convert the batch matmul to matmul, this operator could be speed faster
    mat_dim_a.height_ *= mat_dim_a.batch_size_;
    mat_dim_a.batch_size_ = 0;
    blas.MatMul(*input, mat_dim_a, weight, mat_dim_b, static_cast<T>(1.0),
                cache_input, static_cast<T>(0));

306
    auto in = framework::EigenMatrix<T>::Reshape(
307
        *cache_input, cache_input->dims().size() - 1);
308
    auto bias_ih_tmp = framework::EigenMatrix<T>::From(
309
        bias_ih, phi::make_ddim({1, bias_ih.dims()[0]}));
310
    const int& row_num =
311
        phi::product(cache_input->dims()) / cache_input->dims()[2];
312
    in = in + bias_ih_tmp.broadcast(Eigen::DSizes<int, 2>(row_num, 1));
313 314 315 316 317 318 319 320
    if (is_gru(context)) {
      // reset_gate update_gate cell_gate = [1, 1, 0]
      Tensor bias_hh_tmp;
      bias_hh_tmp.Resize({bias_hh.numel()});
      bias_hh_tmp.mutable_data<T>(context.GetPlace());
      framework::TensorCopy(bias_hh, context.GetPlace(), dev_ctx, &bias_hh_tmp);
      bias_hh_tmp.Resize({3, bias_hh_tmp.numel() / 3});
      auto bias_hh_tmp_unbind = Unbind(bias_hh_tmp);
321
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
322 323
      zero(dev_ctx, &bias_hh_tmp_unbind[2], static_cast<T>(0.0));

324
      auto bias_hh_after_mask = framework::EigenMatrix<T>::From(
325
          bias_hh_tmp, phi::make_ddim({1, bias_hh.dims()[0]}));
326
      in = in + bias_hh_after_mask.broadcast(Eigen::DSizes<int, 2>(row_num, 1));
327
    } else {
328
      auto bias_hh_no_mask = framework::EigenMatrix<T>::From(
329
          bias_hh, phi::make_ddim({1, bias_hh.dims()[0]}));
330
      in = in + bias_hh_no_mask.broadcast(Eigen::DSizes<int, 2>(row_num, 1));
331 332 333 334 335 336 337 338 339
    }
  }

  void postprocess(const framework::ExecutionContext& context, Tensor* output,
                   const Tensor* init_h, const Tensor* init_c, Tensor* last_h,
                   Tensor* last_c, const Tensor& mask_tensor) {
    // in the output, if mask flag is 0, we will retun the zero data
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
340
    auto out =
341
        framework::EigenMatrix<T>::Reshape(*output, output->dims().size() - 1);
342
    auto mask = framework::EigenMatrix<T>::From(
343
        mask_tensor, phi::make_ddim({mask_tensor.dims()[1], 1}));
344
    auto pre_h =
345
        framework::EigenMatrix<T>::Reshape(*init_h, init_h->dims().size() - 1);
346
    auto curr_h =
347
        framework::EigenMatrix<T>::Reshape(*last_h, last_h->dims().size() - 1);
348 349 350 351
    auto mask_broadcast =
        mask.broadcast(Eigen::DSizes<int, 2>(1, output->dims()[2]));
    curr_h.device(place) = out * mask_broadcast + pre_h * (1 - mask_broadcast);
    out.device(place) = out * mask_broadcast;
352 353

    if (is_lstm(context)) {
354
      auto pre_c = framework::EigenMatrix<T>::Reshape(
355
          *init_c, init_c->dims().size() - 1);
356
      auto curr_c = framework::EigenMatrix<T>::Reshape(
357
          *last_c, last_c->dims().size() - 1);
358 359
      curr_c.device(place) =
          curr_c * mask_broadcast + pre_c * (1 - mask_broadcast);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    }
  }

  virtual void operator()(const framework::ExecutionContext& context,
                          const Tensor* input, const TensorList& vec,
                          const TensorList& init_h, const TensorList& init_c,
                          const Tensor* sequence_length, TensorList last_h,
                          TensorList last_c, Tensor* output,
                          const int& layer_idx, const int& gate_num,
                          Tensor* gate_value, Tensor* cell_value,
                          Tensor* cell_act_value, bool is_test) {}

  void RunTestIter(const framework::ExecutionContext& context,
                   const Tensor* input, const TensorList& vec,
                   const TensorList& init_h, const TensorList& init_c,
                   const Tensor* sequence_length, TensorList* last_h_ptr,
                   TensorList* last_c_ptr, Tensor* output, int layer_idx,
                   Tensor* gate_value, Tensor* cell_value,
                   Tensor* cell_act_value, bool is_bidirect, int offset) {
    bool is_reverse = false;
    if (is_bidirect) {
      layer_idx = 2 * layer_idx + offset;
      if (offset > 0) {
        is_reverse = true;
      }
    }
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    const int& time_step = input->dims()[0];
    this->preprocess(context, input, vec[0 + offset * 4], vec[2 + offset * 4],
                     vec[3 + offset * 4], gate_value, true);
    auto input_tensors = Unbind(*gate_value);
    auto output_tensors = Unbind(*output);
    if (is_reverse) {
      std::reverse(input_tensors.begin(), input_tensors.end());
      std::reverse(output_tensors.begin(), output_tensors.end());
    }
    TensorList mask_tensor_list;
    // construct the mask matrix for the mask
    bool has_sequence_length = false;
    if (sequence_length != nullptr) {
      has_sequence_length = true;
    }
    Tensor mask_matrix;
    int mask_min_length = time_step;
    if (has_sequence_length) {
406
      mask_matrix.Resize(phi::make_ddim({time_step, input->dims()[1]}));
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

      create_mask_matrix<T>(context, sequence_length, &mask_matrix, is_reverse,
                            &mask_min_length);
      mask_tensor_list = Unbind(mask_matrix);
    }
    if (is_reverse) {
      mask_min_length = mask_min_length - time_step + 1;
    }
    bool has_allocate_mem_c = false;
    bool has_use_last_h_holder = false;
    const int& reverse_flag = is_reverse ? -1 : 1;

    // define the init_h holder for the swap
    Tensor init_h_temp;
    framework::TensorCopy(*&init_h[layer_idx], context.GetPlace(), dev_ctx,
                          &init_h_temp);
    Tensor* init_h_holder = &init_h_temp;
    Tensor* last_h_holder = nullptr;
    if (0 < mask_min_length) {
      last_h_holder = &(output_tensors[0]);
    } else {
      last_h_holder = &(*last_h_ptr)[layer_idx];
      has_use_last_h_holder = true;
    }

    Tensor* init_c_holder = nullptr;
    const Tensor* init_c_temp_holder = nullptr;
    Tensor init_c_temp;
    Tensor* last_c_holder = nullptr;
    Tensor last_c_temp;

    if (is_lstm(context)) {
      last_c_holder = &(*last_c_ptr)[layer_idx];
      init_c_temp_holder = &init_c[layer_idx];
    } else if (is_gru(context)) {
      // for reset output value
      last_c_temp.Resize(init_h[layer_idx].dims());
      last_c_temp.mutable_data<T>(context.GetPlace());
      last_c_holder = &last_c_temp;
    }
    Tensor weight_hh_tmp;  // for gru
    if (is_gru(context)) {
      weight_hh_tmp.Resize(vec[1 + offset * 4].dims());
      weight_hh_tmp.mutable_data<T>(context.GetPlace());
      framework::TensorCopy(vec[1 + offset * 4], context.GetPlace(), dev_ctx,
                            &weight_hh_tmp);
      weight_hh_tmp.Resize({3, weight_hh_tmp.numel() / 3});
      auto weight_hh_tmp_unbind = Unbind(weight_hh_tmp);
455
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
      zero(dev_ctx, &weight_hh_tmp_unbind[2], static_cast<T>(0.0));
      weight_hh_tmp.Resize(vec[1 + offset * 4].dims());
    }
    for (int i = 0; i < time_step; i++) {
      bool in_mask = (reverse_flag * i) >= mask_min_length;
      if (i > 0) {
        if (!has_allocate_mem_c) {
          if (is_lstm(context) || is_gru(context)) {
            init_c_temp.Resize(init_h[layer_idx].dims());
            init_c_temp.mutable_data<T>(context.GetPlace());
            init_c_holder = &init_c_temp;
          }
          has_allocate_mem_c = true;
        }
        SwapPoniter(&init_c_holder, &last_c_holder);
        init_c_temp_holder = init_c_holder;
      }
      cell_(&dev_ctx, &input_tensors[i], &vec[1 + offset * 4], init_h_holder,
            init_c_temp_holder, last_h_holder, last_c_holder, nullptr,
            &output_tensors[i], &vec[3 + offset * 4] /* bias_hh */,
            &weight_hh_tmp);
      if (in_mask) {
        this->postprocess(context, &output_tensors[i], init_h_holder,
                          init_c_temp_holder, last_h_holder, last_c_holder,
                          mask_tensor_list[i]);
      }
      // prepare next step
      if (i + 1 < time_step) {
        bool next_step_mask = (reverse_flag * (i + 1)) >= mask_min_length;
        if (next_step_mask) {
          if (!has_use_last_h_holder) {
            init_h_holder = &(*last_h_ptr)[layer_idx];
          }
        } else {
          init_h_holder = &(output_tensors[i + 1]);
        }
        SwapPoniter(&init_h_holder, &last_h_holder);
      }
    }
    if (has_sequence_length) {
      if (last_h_holder != &(*last_h_ptr)[layer_idx]) {
        framework::TensorCopy(*last_h_holder, context.GetPlace(), dev_ctx,
                              &(*last_h_ptr)[layer_idx]);
      }
    } else {
      framework::TensorCopy(output_tensors[time_step - 1], context.GetPlace(),
                            dev_ctx, &(*last_h_ptr)[layer_idx]);
    }

    if (time_step % 2 == 0) {
      if (is_lstm(context)) {
        framework::TensorCopy(*last_c_holder, context.GetPlace(), dev_ctx,
                              &(*last_c_ptr)[layer_idx]);
      }
    }
  }

  void RunIter(const framework::ExecutionContext& context, const Tensor* input,
               const TensorList& vec, const TensorList& init_h,
               const TensorList& init_c, const Tensor* sequence_length,
               TensorList* last_h_ptr, TensorList* last_c_ptr, Tensor* output,
               int layer_idx, Tensor* gate_value, Tensor* cell_value,
               Tensor* cell_act_value, bool is_bidirect, int offset,
               bool is_test) {
    if (is_test) {
      RunTestIter(context, input, vec, init_h, init_c, sequence_length,
                  last_h_ptr, last_c_ptr, output, layer_idx, gate_value,
                  cell_value, cell_act_value, is_bidirect, offset);
      return;
    }
    bool is_reverse = false;
    if (is_bidirect) {
      layer_idx = 2 * layer_idx + offset;
      if (offset > 0) {
        is_reverse = true;
      }
    }
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    const int& time_step = input->dims()[0];
    this->preprocess(context, input, vec[0 + offset * 4], vec[2 + offset * 4],
                     vec[3 + offset * 4], gate_value, is_test);
    auto input_tensors = Unbind(*gate_value);
    auto output_tensors = Unbind(*output);
    if (is_reverse) {
      std::reverse(input_tensors.begin(), input_tensors.end());
      std::reverse(output_tensors.begin(), output_tensors.end());
    }
    TensorList mask_tensor_list;
    // construct the mask matrix for the mask
    bool has_sequence_length = false;
    if (sequence_length != nullptr) {
      has_sequence_length = true;
    }
    Tensor mask_matrix;
    int mask_min_length = time_step;
    if (has_sequence_length) {
553
      mask_matrix.Resize(phi::make_ddim({time_step, input->dims()[1]}));
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
      create_mask_matrix<T>(context, sequence_length, &mask_matrix, is_reverse,
                            &mask_min_length);
      mask_tensor_list = Unbind(mask_matrix);
    }
    if (is_reverse) {
      mask_min_length = mask_min_length - time_step + 1;
    }

    // define the init_h holder for the swap
    bool has_use_last_h_holder = false;
    const int& reverse_flag = is_reverse ? -1 : 1;

    TensorList cell_value_tensors;
    TensorList cell_act_value_tensors;

    Tensor init_h_temp;
    framework::TensorCopy(*&init_h[layer_idx], context.GetPlace(), dev_ctx,
                          &init_h_temp);
    Tensor* init_h_holder = &init_h_temp;
    Tensor* last_h_holder = nullptr;
    if (0 < mask_min_length) {
      last_h_holder = &(output_tensors[0]);
    } else {
      last_h_holder = &(*last_h_ptr)[layer_idx];
      has_use_last_h_holder = true;
    }

    const Tensor* init_c_holder = nullptr;
    Tensor* last_c_holder = nullptr;
    Tensor* last_c_act_holder = nullptr;
    if (is_lstm(context) || is_gru(context)) {
      cell_value->Resize({time_step, cell_value->numel() / time_step});
      cell_value_tensors = Unbind(*cell_value);
      if (is_lstm(context)) {
        cell_act_value->Resize(
            {time_step, cell_act_value->numel() / time_step});
        cell_act_value_tensors = Unbind(*cell_act_value);
      }
    }
    Tensor weight_hh_tmp;  // for gru
    if (is_gru(context)) {
      weight_hh_tmp.Resize(vec[1 + offset * 4].dims());
      weight_hh_tmp.mutable_data<T>(context.GetPlace());
      framework::TensorCopy(vec[1 + offset * 4], context.GetPlace(), dev_ctx,
                            &weight_hh_tmp);
      weight_hh_tmp.Resize({3, weight_hh_tmp.numel() / 3});
      auto weight_hh_tmp_unbind = Unbind(weight_hh_tmp);
601
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
      zero(dev_ctx, &weight_hh_tmp_unbind[2], static_cast<T>(0.0));
      weight_hh_tmp.Resize(vec[1 + offset * 4].dims());
    }
    for (int i = 0; i < time_step; i++) {
      bool in_mask = (reverse_flag * i) >= mask_min_length;
      if (is_lstm(context)) {
        if (i == 0) {
          init_c_holder = &init_c[layer_idx];
        } else {
          init_c_holder = &cell_value_tensors[i - 1];
        }
        cell_value_tensors[i].Resize(init_c[layer_idx].dims());
        cell_act_value_tensors[i].Resize(init_c[layer_idx].dims());
        last_c_holder = &cell_value_tensors[i];
        last_c_act_holder = &cell_act_value_tensors[i];
      } else if (is_gru(context)) {
        cell_value_tensors[i].Resize(init_h[layer_idx].dims());
        last_c_holder = &cell_value_tensors[i];
      }

      cell_(&dev_ctx, &input_tensors[i], &vec[1 + offset * 4], init_h_holder,
            init_c_holder, last_h_holder, last_c_holder, last_c_act_holder,
            &output_tensors[i], &vec[3 + offset * 4] /* bias_hh */,
            &weight_hh_tmp);
      if (in_mask) {
        this->postprocess(context, &output_tensors[i], init_h_holder,
                          init_c_holder, last_h_holder, last_c_holder,
                          mask_tensor_list[i]);
      }
      // prepare next step
      if (i + 1 < time_step) {
        bool next_step_mask = (reverse_flag * (i + 1)) >= mask_min_length;
        if (next_step_mask) {
          if (!has_use_last_h_holder) {
            init_h_holder = &(*last_h_ptr)[layer_idx];
          }
        } else {
          init_h_holder = &(output_tensors[i + 1]);
        }
        SwapPoniter(&init_h_holder, &last_h_holder);
      }
    }
    if (has_sequence_length) {
      if (last_h_holder != &(*last_h_ptr)[layer_idx]) {
        framework::TensorCopy(*last_h_holder, context.GetPlace(), dev_ctx,
                              &(*last_h_ptr)[layer_idx]);
      }
    } else {
      framework::TensorCopy(output_tensors[time_step - 1], context.GetPlace(),
                            dev_ctx, &(*last_h_ptr)[layer_idx]);
    }
    if (is_lstm(context)) {
      framework::TensorCopy(cell_value_tensors[time_step - 1],
                            context.GetPlace(), dev_ctx,
                            &(*last_c_ptr)[layer_idx]);
    }
  }
  // Cell for the rnn module
  CellType cell_;
};

template <typename T, typename CellType>
struct SingleLayer : public Layer<T, CellType> {
  explicit SingleLayer(const CellType& cell) : Layer<T, CellType>(cell) {}
  void operator()(const framework::ExecutionContext& context,
                  const Tensor* input, const TensorList& vec,
                  const TensorList& init_h, const TensorList& init_c,
                  const Tensor* sequence_length, TensorList last_h,
                  TensorList last_c, Tensor* output, const int& layer_idx,
                  const int& gate_num, Tensor* gate_value, Tensor* cell_value,
                  Tensor* cell_act_value, bool is_test) {
    this->RunIter(context, input, vec, init_h, init_c, sequence_length, &last_h,
                  &last_c, output, layer_idx, gate_value, cell_value,
                  cell_act_value, false, 0, is_test);
  }
};

template <typename T, typename CellType>
struct BidirLayer : public Layer<T, CellType> {
  explicit BidirLayer(const CellType& cell) : Layer<T, CellType>(cell) {}
  void operator()(const framework::ExecutionContext& context,
                  const Tensor* input, const TensorList& vec,
                  const TensorList& init_h, const TensorList& init_c,
                  const Tensor* sequence_length, TensorList last_h,
                  TensorList last_c, Tensor* output, const int& layer_idx,
                  const int& gate_num, Tensor* gate_value, Tensor* cell_value,
                  Tensor* cell_act_value, bool is_test) {
    TensorList output_vec(2);
    Tensor forward_input_w, forward_cell_value, forward_cell_act_value;
    Tensor backward_input_w, backward_cell_value, backward_cell_act_value;
    int time_step = input->dims()[0];
    int batch_size = input->dims()[1];
    int hidden_size = output->dims()[2];
    for (int i = 0; i < 2; ++i) {
      output_vec[i].Resize({time_step, batch_size, hidden_size / 2});
      output_vec[i].mutable_data<T>(context.GetPlace());
    }
    if (!is_test) {
      gate_value->Resize({2, gate_value->numel() / 2});
      forward_input_w = gate_value->Slice(0, 1);
      backward_input_w = gate_value->Slice(1, 2);

      if (is_lstm(context) || is_gru(context)) /* for lstm and gru */ {
        cell_value->Resize({2, cell_value->numel() / 2});
        cell_act_value->Resize({2, cell_act_value->numel() / 2});
        forward_cell_value = cell_value->Slice(0, 1);
        backward_cell_value = cell_value->Slice(1, 2);
        if (is_lstm(context)) {
          forward_cell_act_value = cell_act_value->Slice(0, 1);
          backward_cell_act_value = cell_act_value->Slice(1, 2);
        }
      }
    }

    this->RunIter(context, input, vec, init_h, init_c, sequence_length, &last_h,
                  &last_c, &output_vec[0], layer_idx, &forward_input_w,
                  &forward_cell_value, &forward_cell_act_value, true, 0,
                  is_test);

    this->RunIter(context, input, vec, init_h, init_c, sequence_length, &last_h,
                  &last_c, &output_vec[1], layer_idx, &backward_input_w,
                  &backward_cell_value, &backward_cell_act_value, true, 1,
                  is_test);

    // concat the the output result
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(dev_ctx, output_vec, static_cast<int>(2), output);
  }
};

template <typename TensorType>
void SplitReserveData(const framework::ExecutionContext& ctx,
                      TensorType* reserve_data, Tensor* gate_data,
                      Tensor* cell_data, Tensor* cell_act_data,
                      Tensor* hidden_data, int direction_num,
                      const int& time_step, const int& batch_size,
                      const int& hidden_size, const int& gate_num,
                      const int& num_layers) {
  const int& gate_data_idx = gate_num * num_layers;
  const int& cell_data_idx = (gate_num + 1) * num_layers;
  const int& cell_act_data_idx = (gate_num + 2) * num_layers;
  // simple rnn
  int hidden_data_start_idx = gate_data_idx;
  *gate_data = reserve_data->Slice(0, gate_data_idx);
  if (is_lstm(ctx)) {
    *cell_data = reserve_data->Slice(gate_data_idx, cell_data_idx);
    *cell_act_data = reserve_data->Slice(cell_data_idx, cell_act_data_idx);
    hidden_data_start_idx = cell_act_data_idx;
  } else if (is_gru(ctx)) {
    *cell_data = reserve_data->Slice(gate_data_idx, cell_data_idx);
    hidden_data_start_idx = cell_data_idx;
  }
  int hidden_data_idx = hidden_data_start_idx + (num_layers - 1);
  if (num_layers > 1) {
    *hidden_data = reserve_data->Slice(hidden_data_start_idx, hidden_data_idx);
  }
}

template <typename TensorType>
void reset_parameter_vector(const std::vector<TensorType>& raw_params_vec,
                            const int& num_layers, const int& gate_num,
                            const bool& is_bidirec,
                            std::vector<TensorList>* params_vec) {
  // the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers
  // + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to
  // ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers
  const int& direction_num = is_bidirec ? 2 : 1;
  const int& layer_weight_size = 4 * direction_num;
  const int& all_weight_size = num_layers * layer_weight_size;
  const int& bias_start_idx = all_weight_size / 2;
  for (int i = 0; i < num_layers; i++) {
    TensorList tensor_list;
    tensor_list.reserve(layer_weight_size);
    for (int j = 0; j < layer_weight_size; j++) {
      Tensor tensor_holder;
      tensor_list.emplace_back(tensor_holder);
    }
    for (int j = 0; j < layer_weight_size; j++) {
      int k = j % 4;
      const int& section = j / 4;
      int tensor_idx = i * 2 * direction_num + section * 2 + k % 2;
      if (k >= 2) {
        tensor_idx += bias_start_idx;
      }
      tensor_list[j].ShareDataWith(*raw_params_vec[tensor_idx]);
    }
    params_vec->emplace_back(tensor_list);
  }
}

template <typename CellType, typename T>
void AllocateReserveData(const framework::ExecutionContext& ctx,
                         Tensor* reserve_data, Tensor* gate_data,
                         Tensor* cell_data, Tensor* cell_act_data,
                         Tensor* hidden_data, const Tensor* input,
                         bool is_bidirec, int num_layers, int gate_num,
                         int hidden_size) {
  const int& direction_num = is_bidirec ? 2 : 1;
  const int& time_step = input->dims()[0];
  const int& batch_size = input->dims()[1];
  const int& block_size = direction_num * time_step * batch_size * hidden_size;
  int hidden_data_idx = (num_layers - 1);
  if (is_lstm(ctx)) {
    hidden_data_idx += (gate_num + 2) * num_layers;
  } else if (is_gru(ctx)) {
    hidden_data_idx += (gate_num + 1) * num_layers;
  } else {
    hidden_data_idx += gate_num * num_layers;
  }

  reserve_data->Resize({hidden_data_idx, block_size});
  reserve_data->mutable_data<T>(ctx.GetPlace());
  SplitReserveData(ctx, reserve_data, gate_data, cell_data, cell_act_data,
                   hidden_data, direction_num, time_step, batch_size,
                   hidden_size, gate_num, num_layers);
}

template <typename CellType, template <typename, typename> class LayerT,
          template <typename, typename> class SingleLayerT,
          template <typename, typename> class BidirLayerT, typename T>
void RnnFunc(const framework::ExecutionContext& ctx, const Tensor* input,
             const std::vector<const Tensor*> weight_list, const Tensor* init_h,
             const Tensor* init_c, const Tensor* sequence_length,
             Tensor* last_h, Tensor* last_c, Tensor* output,
             Tensor* dropout_mask, const int& num_layers, const int& gate_num,
             const int& input_size, const int& hidden_size,
             const bool& is_bidirec, const std::string& cell_type,
832
             const float& dropout_prob, bool is_test, const int& seed,
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
             Tensor* reserve_data) {
  const int& direction_num = is_bidirec ? 2 : 1;
  const auto& init_h_dims = init_h->dims();
  PADDLE_ENFORCE_EQ(init_h_dims[0], num_layers * direction_num,
                    platform::errors::InvalidArgument(
                        "The num_layers of in RNN layer must be the same as "
                        "first dim of init hidden, but received"
                        " num_layers:%d, dim:%d",
                        num_layers, init_h_dims[0]));
  if (is_lstm(ctx)) {
    const auto& init_c_dims = init_c->dims();
    PADDLE_ENFORCE_EQ(init_c_dims[0], num_layers * direction_num,
                      platform::errors::InvalidArgument(
                          "The num_layers of in RNN layer must be the same as "
                          "first dim of cell state hidden, but received"
                          " num_layers:%d, dim:%d",
                          num_layers, init_h_dims[0]));
  }
  CellType cell;

  std::vector<TensorList> parameter_lists;
  parameter_lists.reserve(num_layers);
  reset_parameter_vector(weight_list, num_layers, gate_num, is_bidirec,
                         &parameter_lists);

  Tensor gate_data, cell_data, cell_act_data, hidden_data;

  if (!is_test) {
    AllocateReserveData<CellType, T>(
        ctx, reserve_data, &gate_data, &cell_data, &cell_act_data, &hidden_data,
        input, is_bidirec, num_layers, gate_num, hidden_size);
    gate_data.Resize({num_layers, gate_data.numel() / num_layers});
    cell_data.Resize({num_layers, cell_data.numel() / num_layers});
    cell_act_data.Resize({num_layers, cell_act_data.numel() / num_layers});

    if (num_layers > 1) {
      hidden_data.Resize(
          {num_layers - 1, hidden_data.numel() / (num_layers - 1)});
    }
  }
  Tensor* input_holder;
  Tensor* output_holder = output;
  Tensor temp;
  bool has_allocate_mem = false;

  auto init_h_unbind = Unbind(*init_h);
  auto last_h_unbind = Unbind(*last_h);
  TensorList init_c_unbind, last_c_unbind;
  if (is_lstm(ctx)) {
    init_c_unbind = Unbind(*init_c);
    last_c_unbind = Unbind(*last_c);
  }

  Tensor curr_gate_data, curr_cell_data, curr_cell_act_data;
  Tensor curr_hidden_data, prev_hidden_data;
  bool has_dropout_reset = false;
  for (int i = 0; i < num_layers; i++) {
    if (!is_test) {
      if (cell_data.numel() > 0) /** for lstm, gru **/ {
        curr_cell_data = cell_data.Slice(i, i + 1);
      }
      if (cell_act_data.numel() > 0) /*for lstm*/ {
        curr_cell_act_data = cell_act_data.Slice(i, i + 1);
      }
      curr_gate_data = gate_data.Slice(i, i + 1);
      output_holder = output;
      if (i < num_layers - 1 && num_layers > 1) {
        curr_hidden_data = hidden_data.Slice(i, i + 1);
        curr_hidden_data.Resize(output->dims());
        output_holder = &curr_hidden_data;
      }
    }
    if (i > 0) {
      if (!has_allocate_mem) {
        temp.Resize(output->dims());
        temp.mutable_data<T>(ctx.GetPlace());
        input_holder = &temp;
        has_allocate_mem = true;
      }
      if (!is_test) {
        prev_hidden_data = hidden_data.Slice(i - 1, i);
        input_holder->Resize(output->dims());
915 916 917 918 919 920 921 922
        if (dropout_prob != 0) {
          dropout_cpu_function_inplace<T>(ctx, &prev_hidden_data, input_holder,
                                          dropout_mask, dropout_prob, seed,
                                          is_test, &has_dropout_reset);
        } else {
          input_holder = &prev_hidden_data;
          input_holder->Resize(output->dims());
        }
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
      } else {
        SwapPoniter(&output_holder, &input_holder);
      }
    }
    const Tensor* input_temp_holder = input;
    if (i > 0) {
      input_temp_holder = input_holder;
    }
    LayerT<T, CellType>* layer;
    SingleLayerT<T, CellType> slayer(cell);
    BidirLayerT<T, CellType> blayer(cell);
    if (is_bidirec) {
      layer = &blayer;
    } else {
      layer = &slayer;
    }
    (*layer)(ctx, input_temp_holder, parameter_lists[i], init_h_unbind,
             init_c_unbind, sequence_length, last_h_unbind, last_c_unbind,
             output_holder, i, gate_num, &curr_gate_data, &curr_cell_data,
             &curr_cell_act_data, is_test);
  }
  if (num_layers % 2 == 0) {
    framework::TensorCopy(
        *output_holder, ctx.GetPlace(),
        ctx.template device_context<platform::CPUDeviceContext>(), output);
  }
}

template <typename DeviceContext, typename T>
class RNNCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto pre_state = ctx.MultiInput<Tensor>("PreState");
    auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
    auto state = ctx.MultiOutput<Tensor>("State");
    auto* output = ctx.Output<Tensor>("Out");
    auto* dropout_mask = ctx.Output<Tensor>("DropoutState");
    auto* reserve_data = ctx.Output<Tensor>("Reserve");
    const int& num_layers = ctx.Attr<int>("num_layers");
    const bool& is_bidirec = ctx.Attr<bool>("is_bidirec");
    const int& input_size = ctx.Attr<int>("input_size");
    const int& hidden_size = ctx.Attr<int>("hidden_size");
    const float& dropout_prob = ctx.Attr<float>("dropout_prob");
    const std::string& mode = ctx.Attr<std::string>("mode");
    const int& seed = ctx.Attr<int>("seed");
969
    bool is_test = ctx.HasAttr("is_test") ? ctx.Attr<bool>("is_test") : false;
970 971 972 973 974 975

    bool has_seq_length = ctx.HasInput("SequenceLength");
    const Tensor* sequence_length = nullptr;
    if (has_seq_length) {
      sequence_length = ctx.Input<Tensor>("SequenceLength");
    }
976 977
    if (dropout_mask->IsInitialized()) {
      if (dropout_mask->numel() != output->numel()) dropout_mask->clear();
978
    }
979
    dropout_mask->mutable_data<uint8_t>(output->dims(), ctx.GetPlace());
980

981
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
982
    phi::funcs::SetConstant<platform::CPUDeviceContext, uint8_t> ones;
983
    ones(dev_ctx, dropout_mask, static_cast<uint8_t>(1));
984 985 986 987 988 989 990 991 992 993 994 995 996
    // init the output and allocate the memory
    output->mutable_data<T>(ctx.GetPlace());
    int gate_num = 4;
    state[0]->mutable_data<T>(ctx.GetPlace());
    if (is_lstm(ctx)) {
      state[1]->mutable_data<T>(ctx.GetPlace());
      RnnFunc<LSTMCell<T>, Layer, SingleLayer, BidirLayer, T>(
          ctx, input, weight_list, pre_state[0], pre_state[1], sequence_length,
          state[0], state[1], output, dropout_mask, num_layers, gate_num,
          input_size, hidden_size, is_bidirec, mode, dropout_prob, is_test,
          seed, reserve_data);
    } else if (is_rnn_relu(ctx)) {
      gate_num = 1;
F
Feiyu Chan 已提交
997 998 999
      RnnFunc<SimpleRNNCell<T, ReluCPUFunctor,
                            phi::funcs::detail::ActivationType::kReLU>,
              Layer, SingleLayer, BidirLayer, T>(
1000 1001 1002 1003 1004 1005
          ctx, input, weight_list, pre_state[0], nullptr, sequence_length,
          state[0], nullptr, output, dropout_mask, num_layers, gate_num,
          input_size, hidden_size, is_bidirec, mode, dropout_prob, is_test,
          seed, reserve_data);
    } else if (is_rnn_tanh(ctx)) {
      gate_num = 1;
F
Feiyu Chan 已提交
1006 1007 1008
      RnnFunc<SimpleRNNCell<T, TanhFunctor,
                            phi::funcs::detail::ActivationType::kTanhV2>,
              Layer, SingleLayer, BidirLayer, T>(
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
          ctx, input, weight_list, pre_state[0], nullptr, sequence_length,
          state[0], nullptr, output, dropout_mask, num_layers, gate_num,
          input_size, hidden_size, is_bidirec, mode, dropout_prob, is_test,
          seed, reserve_data);
    } else if (is_gru(ctx)) {
      gate_num = 3;
      RnnFunc<GRUCell<T>, Layer, SingleLayer, BidirLayer, T>(
          ctx, input, weight_list, pre_state[0], nullptr, sequence_length,
          state[0], nullptr, output, dropout_mask, num_layers, gate_num,
          input_size, hidden_size, is_bidirec, mode, dropout_prob, is_test,
          seed, reserve_data);
    }
  }
};

template <typename T>
F
Feiyu Chan 已提交
1025
void create_lstm_value(phi::funcs::LstmMetaValue<T>* lstm_value) {
1026 1027 1028 1029 1030 1031
  lstm_value->check_ig = nullptr;
  lstm_value->check_fg = nullptr;
  lstm_value->check_og = nullptr;
}

template <typename T>
F
Feiyu Chan 已提交
1032
void create_lstm_grad(phi::funcs::LstmMetaGrad<T>* lstm_grad) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  lstm_grad->check_ig_grad = nullptr;
  lstm_grad->check_fg_grad = nullptr;
  lstm_grad->check_og_grad = nullptr;
}

template <typename T>
void create_tensor_by_list(const framework::ExecutionContext& context,
                           Tensor* dst, const std::vector<T>& v) {
  int tensor_size = v.size();
  dst->Resize({tensor_size});
  dst->mutable_data<T>(context.GetPlace());
  int size = v.size();
  for (int i = 0; i < size; ++i) {
    dst->data<T>()[i] = v[i];
  }
}

template <typename T, typename GradCellType>
struct GradLayer {
  explicit GradLayer(const GradCellType& cell) : cell_(cell) {}
  virtual ~GradLayer() {}
  void run_rnn_grad_function(
      const framework::ExecutionContext& context,
      const platform::CPUDeviceContext& device_ctx, const Tensor* input,
      Tensor* input_grad, const Tensor* sequence_length,
      std::vector<Tensor>* init_h_unbind, std::vector<Tensor>* init_c_unbind,
      std::vector<Tensor>* init_h_grad_unbind,
      std::vector<Tensor>* init_c_grad_unbind, Tensor* layer_grad_gate_tensor,
      std::vector<Tensor>* layer_gate_tensor_unbind,
      std::vector<Tensor>* layer_grad_gate_tensor_unbind,
      std::vector<Tensor>* layer_state_tensor_unbind,
      std::vector<Tensor>* layer_act_state_tensor_unbind,
      std::vector<Tensor>* output_tensor_unbind,
      std::vector<Tensor>* output_grad_tensor_unbind,
      const TensorList& last_h_grad_unbind,
      const TensorList& last_c_grad_unbind,
      const std::vector<TensorList>& parameter_lists,
      std::vector<TensorList>* weight_list_grad, const int& layer_idx,
      const int& time_step, const bool& has_sequence_length,
      const bool& is_bidirec, const bool& is_reverse) {
    const int& direction_num = is_bidirec ? 2 : 1;
    const int& current_reverse_idx = is_reverse ? 1 : 0;
    const int& current_layer_idx =
        direction_num * layer_idx + current_reverse_idx;
    int begin_idx = 0;
    if (is_reverse) {
      begin_idx = time_step;
    }

    Tensor mask_matrix;
    TensorList mask_tensor_list;
    int mask_min_length = time_step;
    if (has_sequence_length) {
1086
      mask_matrix.Resize(phi::make_ddim({time_step, input->dims()[1]}));
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
      create_mask_matrix<T>(context, sequence_length, &mask_matrix, is_reverse,
                            &mask_min_length);
      mask_tensor_list = Unbind(mask_matrix);
    }
    // copy the last_h, last_c for swaping pointer
    Tensor a, b;
    Tensor* dynamic_grad_last_h = &a;
    Tensor* dynamic_grad_last_c = &b;
    dynamic_grad_last_h->Resize(last_h_grad_unbind[current_layer_idx].dims());
    dynamic_grad_last_h->mutable_data<T>(context.GetPlace());
    framework::TensorCopy(last_h_grad_unbind[current_layer_idx],
                          context.GetPlace(), dynamic_grad_last_h);
    if (last_c_grad_unbind.size() > 0) {
      dynamic_grad_last_c->Resize(last_c_grad_unbind[current_layer_idx].dims());
      dynamic_grad_last_c->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(last_c_grad_unbind[current_layer_idx],
                            context.GetPlace(), dynamic_grad_last_c);
    } else {
      dynamic_grad_last_c = nullptr;
    }

    Tensor c, d;
    Tensor* dynamic_grad_pre_h = &c;
    Tensor* dynamic_grad_pre_c = &d;
1111
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    if (init_h_grad_unbind->size() > 0) {
      dynamic_grad_pre_h->ShareDataWith(
          (*init_h_grad_unbind)[current_layer_idx]);
    } else {
      dynamic_grad_pre_h->Resize(dynamic_grad_last_h->dims());
      dynamic_grad_pre_h->mutable_data<T>(context.GetPlace());
      zero(device_ctx, dynamic_grad_pre_h, static_cast<T>(0.0));
    }
    if (init_c_grad_unbind->size() > 0) {
      dynamic_grad_pre_c->ShareDataWith(
          (*init_c_grad_unbind)[current_layer_idx]);
    } else {
      if (is_lstm(context) || is_gru(context)) {
        dynamic_grad_pre_c->Resize(dynamic_grad_last_h->dims());
        dynamic_grad_pre_c->mutable_data<T>(context.GetPlace());
        if (is_gru(context)) {
          dynamic_grad_last_c = dynamic_grad_pre_c;
        }
      } else {
        dynamic_grad_pre_c = nullptr;
      }
    }

    if (is_reverse) {
      // must be reverse the input, output, input_grad, output_grad
      // the gate and grad_gate must be reverse
      std::reverse(layer_gate_tensor_unbind->begin(),
                   layer_gate_tensor_unbind->end());
      std::reverse(layer_grad_gate_tensor_unbind->begin(),
                   layer_grad_gate_tensor_unbind->end());
      /*
      if (has_sequence_length) {
        std::reverse(mask_tensor_list.begin(), mask_tensor_list.end());
      }*/
      std::reverse(output_tensor_unbind->begin(), output_tensor_unbind->end());
      std::reverse(output_grad_tensor_unbind->begin(),
                   output_grad_tensor_unbind->end());
    }

    Tensor* weight_grad =
        &((*weight_list_grad)[layer_idx][current_reverse_idx * 4 + 1]);
    weight_grad->mutable_data<T>(context.GetPlace());
    zero(device_ctx, weight_grad, static_cast<T>(0.0));

    Tensor* pre_hidden = nullptr;
    Tensor* pre_state = nullptr;
    Tensor* hidden = nullptr;
    if (is_gru(context)) {
1160 1161 1162
      zero(device_ctx,
           &((*weight_list_grad)[layer_idx][current_reverse_idx * 4 + 3]),
           static_cast<T>(0.0));
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    }
    for (int i = time_step - 1; i >= 0; --i) {
      if (has_sequence_length) {
        this->mask_preprocess(context, &(*output_grad_tensor_unbind)[i],
                              dynamic_grad_last_h, dynamic_grad_last_c,
                              dynamic_grad_pre_h, dynamic_grad_pre_c,
                              mask_tensor_list[i]);
      } else {
        this->preprocess(context, &(*output_grad_tensor_unbind)[i],
                         dynamic_grad_last_h);
      }
      hidden = &(*output_tensor_unbind)[i];
      if (i == 0) {
        pre_hidden = &(*init_h_unbind)[current_layer_idx];
        if (init_c_unbind->size() > 0) {
          pre_state = &(*init_c_unbind)[current_layer_idx];
        }
      } else {
        pre_hidden = &(*output_tensor_unbind)[i - 1];
        if (layer_state_tensor_unbind->size() > 0) {
          pre_state = &(*layer_state_tensor_unbind)[begin_idx + i - 1];
        }
      }
      this->cell_(
          context, &(*layer_gate_tensor_unbind)[i],
          &(*layer_state_tensor_unbind)[begin_idx + i],
          &(*layer_act_state_tensor_unbind)[begin_idx + i], hidden,
          &(parameter_lists[layer_idx][current_reverse_idx * 4 + 1]),
          pre_hidden, pre_state, dynamic_grad_last_h, dynamic_grad_last_c,
          &(*layer_grad_gate_tensor_unbind)[i], weight_grad, dynamic_grad_pre_h,
1193
          dynamic_grad_pre_c,
1194 1195 1196 1197 1198 1199 1200 1201
          &((*weight_list_grad)[layer_idx][current_reverse_idx * 4 + 3]),
          mask_tensor_list[i], has_sequence_length);
      SwapPoniter(&dynamic_grad_last_h, &dynamic_grad_pre_h);
      SwapPoniter(&dynamic_grad_last_c, &dynamic_grad_pre_c);
    }
    // postproces for gradient for w_hi, X, bias_hi, bias_hh
    this->postprocess(context, *layer_grad_gate_tensor, *input, input_grad,
                      parameter_lists[layer_idx],
1202
                      &((*weight_list_grad)[layer_idx]), is_reverse);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

    // copy the gradient to init_c init_h
    if ((*init_h_grad_unbind).size() > 0 && time_step % 2 == 0) {
      framework::TensorCopy(*dynamic_grad_last_h, context.GetPlace(),
                            &((*init_h_grad_unbind)[current_layer_idx]));
    }
    if ((*init_c_grad_unbind).size() > 0 && time_step % 2 == 0) {
      framework::TensorCopy(*dynamic_grad_last_c, context.GetPlace(),
                            &((*init_c_grad_unbind)[current_layer_idx]));
    }
  }

  virtual void operator()(
      const framework::ExecutionContext& context, const Tensor* input,
      const Tensor* output, const TensorList& init_h_unbind,
      const TensorList& init_c_unbind, const TensorList& last_h_grad_unbind,
      const TensorList& last_c_grad_unbind,
      const TensorList& gate_tensor_unbind,
      const TensorList& state_tensor_unbind,
      const TensorList& act_state_tensor_unbind, const Tensor* output_grad,
      const std::vector<TensorList>& parameter_lists,
      const Tensor* sequence_length, Tensor* input_grad,
      TensorList* init_h_grad_unbind, TensorList* init_c_grad_unbind,
      const std::vector<TensorList>& weight_list_grad, const int& layer_idx,
      const int& gate_num) {}
1228

1229 1230 1231 1232
  void preprocess(const framework::ExecutionContext& context,
                  const Tensor* grad_output, Tensor* grad_last_h) {
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
1233
    auto output_grad = framework::EigenMatrix<T>::Reshape(
1234
        *grad_output, grad_output->dims().size() - 1);
1235
    auto last_h_grad = framework::EigenMatrix<T>::Reshape(
1236 1237
        *grad_last_h, grad_last_h->dims().size() - 1);
    // the output gradient contribute the gradient to last_h
1238
    last_h_grad.device(place) = last_h_grad + output_grad;
1239 1240 1241 1242 1243 1244 1245 1246
  }

  void mask_preprocess(const framework::ExecutionContext& context,
                       const Tensor* grad_output, Tensor* grad_last_h,
                       Tensor* grad_last_c, Tensor* grad_pre_h,
                       Tensor* grad_pre_c, const Tensor& mask_tensor) {
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
1247
    auto mask = framework::EigenMatrix<T>::From(
1248
        mask_tensor, phi::make_ddim({mask_tensor.dims()[1], 1}));
1249 1250
    auto mask_broadcast =
        mask.broadcast(Eigen::DSizes<int, 2>(1, grad_output->dims()[2]));
1251

1252
    auto last_h_grad = framework::EigenMatrix<T>::Reshape(
1253
        *grad_last_h, grad_last_h->dims().size() - 1);
1254
    auto pre_h_grad = framework::EigenMatrix<T>::Reshape(
1255
        *grad_pre_h, grad_pre_h->dims().size() - 1);
1256
    auto output_grad = framework::EigenMatrix<T>::Reshape(
1257
        *grad_output, grad_output->dims().size() - 1);
1258 1259 1260
    last_h_grad.device(place) = last_h_grad + output_grad * mask_broadcast;
    pre_h_grad.device(place) = (1 - mask_broadcast) * last_h_grad;
    last_h_grad.device(place) = mask_broadcast * last_h_grad;
1261 1262

    if (grad_last_c && grad_pre_c && is_lstm(context)) {
1263
      auto last_c_grad = framework::EigenMatrix<T>::Reshape(
1264
          *grad_last_c, grad_last_c->dims().size() - 1);
1265
      auto pre_c_grad = framework::EigenMatrix<T>::Reshape(
1266
          *grad_pre_c, grad_pre_c->dims().size() - 1);
1267 1268
      pre_c_grad.device(place) = (1 - mask_broadcast) * last_c_grad;
      last_c_grad.device(place) = mask_broadcast * last_c_grad;
1269 1270 1271 1272 1273 1274
    }
  }

  void postprocess(const framework::ExecutionContext& context,
                   const Tensor& grad_gate, const Tensor& input,
                   Tensor* input_grad, const TensorList& parameters,
1275
                   TensorList* grad_parameters, const int& is_reverse) {
1276 1277 1278 1279 1280 1281 1282 1283
    // we get the grad_gate step by step, and need to bradocast the grad to the
    // grad_w_hi, grad_bias_hi, grad_bias_hh
    int begin_idx = 0;
    if (is_reverse) {
      begin_idx = 4;
    }
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
1284
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(device_ctx);
1285 1286 1287

    // calc the gradient for the w_hi
    auto mat_dim_out_grad =
1288
        phi::funcs::CreateMatrixDescriptor(grad_gate.dims(), 0, true);
1289
    auto mat_dim_input =
1290
        phi::funcs::CreateMatrixDescriptor(input.dims(), 0, false);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    mat_dim_out_grad.width_ *= mat_dim_out_grad.batch_size_;
    mat_dim_out_grad.batch_size_ = 0;
    mat_dim_input.height_ *= mat_dim_input.batch_size_;
    mat_dim_input.batch_size_ = 0;
    blas.MatMul(grad_gate, mat_dim_out_grad, input, mat_dim_input,
                static_cast<T>(1.0), &((*grad_parameters)[begin_idx + 0]),
                T(0));

    // calc the gradient for the X
    auto mat_dim_out_grad_new =
1301
        phi::funcs::CreateMatrixDescriptor(grad_gate.dims(), 0, false);
1302 1303 1304
    mat_dim_out_grad_new.height_ *= mat_dim_out_grad_new.batch_size_;
    mat_dim_out_grad_new.batch_size_ = 0;
    auto mat_dim_parameter =
1305
        phi::funcs::CreateMatrixDescriptor(parameters[0].dims(), 0, false);
1306 1307 1308 1309
    blas.MatMul(grad_gate, mat_dim_out_grad_new, parameters[begin_idx + 0],
                mat_dim_parameter, static_cast<T>(1.0), input_grad, T(1));

    // calc the gradient of Bias_hi, Bias_hh
1310
    phi::funcs::ColwiseSum<platform::CPUDeviceContext, T> col_sum;
1311 1312 1313 1314 1315 1316
    Tensor tmp_grad_gate;
    tmp_grad_gate.ShareDataWith(grad_gate);
    tmp_grad_gate.Resize(
        {grad_gate.dims()[0] * grad_gate.dims()[1], grad_gate.dims()[2]});
    col_sum(device_ctx, tmp_grad_gate, &((*grad_parameters)[begin_idx + 2]));
    // Bias_hh
1317
    if (!is_gru(context)) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
      col_sum(device_ctx, tmp_grad_gate, &((*grad_parameters)[begin_idx + 3]));
    }
  }
  GradCellType cell_;
};

template <typename T, typename GradCellType>
struct SingleGradLayer : GradLayer<T, GradCellType> {
  // explicit SingleGradLayer(GradCellType& cell) : cell_(cell) {}
  explicit SingleGradLayer(const GradCellType& cell)
      : GradLayer<T, GradCellType>(cell) {}
  virtual ~SingleGradLayer() {}
  void operator()(
      const framework::ExecutionContext& context, const Tensor* input,
      const Tensor* output, std::vector<Tensor>* init_h_unbind,
      std::vector<Tensor>* init_c_unbind, const TensorList& last_h_grad_unbind,
      const TensorList& last_c_grad_unbind,
      const TensorList& gate_tensor_unbind,
      const TensorList& state_tensor_unbind,
      const TensorList& act_state_tensor_unbind, const Tensor* output_grad,
      const std::vector<TensorList>& parameter_lists,
      const Tensor* sequence_length, Tensor* input_grad,
      TensorList* init_h_grad_unbind, TensorList* init_c_grad_unbind,
      std::vector<TensorList>* weight_list_grad, const int& layer_idx,
      const int& gate_num) {
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
1345
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    const bool& is_bidirec = context.Attr<bool>("is_bidirec");
    const int& time_step = input->dims()[0];
    const int& batch_size = input->dims()[1];
    const int& direction_num = is_bidirec ? 2 : 1;
    const int& hidden_size = context.Attr<int>("hidden_size");

    // in this section, create the gate_state_grad for the postprocess calculate
    // ubind the output, the output from [time_step, batch_size, hidden_size]
    auto output_tensor_unbind = Unbind(*output);
    auto output_grad_tensor_unbind = Unbind(*output_grad);
    auto layer_gate_tensor = gate_tensor_unbind[layer_idx];
    layer_gate_tensor.Resize(
        {time_step * direction_num, batch_size, hidden_size * gate_num});
    auto layer_gate_tensor_unbind = Unbind(layer_gate_tensor);
    // the gate_tensor and the grad_gate_tensor must be unbind
    Tensor layer_grad_gate_tensor;
    layer_grad_gate_tensor.Resize(layer_gate_tensor.dims());
    layer_grad_gate_tensor.mutable_data<T>(context.GetPlace());
    auto layer_grad_gate_tensor_unbind = Unbind(layer_grad_gate_tensor);

    Tensor layer_state_tensor;
    TensorList layer_state_tensor_unbind;
    if (state_tensor_unbind.size() > 0) {
      layer_state_tensor = state_tensor_unbind[layer_idx];
      layer_state_tensor.Resize(
          {time_step * direction_num, batch_size, hidden_size});
      layer_state_tensor_unbind = Unbind(layer_state_tensor);
    }

    Tensor layer_act_state_tensor;
    TensorList layer_act_state_tensor_unbind;
    if (act_state_tensor_unbind.size() > 0) {
      layer_act_state_tensor = act_state_tensor_unbind[layer_idx];
      layer_act_state_tensor.Resize(
          {time_step * direction_num, batch_size, hidden_size});
      layer_act_state_tensor_unbind = Unbind(layer_act_state_tensor);
    }
    const bool& has_sequence_length = sequence_length == nullptr ? false : true;
    this->run_rnn_grad_function(
        context, device_ctx, input, input_grad, sequence_length, init_h_unbind,
        init_c_unbind, init_h_grad_unbind, init_c_grad_unbind,
        &layer_grad_gate_tensor, &layer_gate_tensor_unbind,
        &layer_grad_gate_tensor_unbind, &layer_state_tensor_unbind,
        &layer_act_state_tensor_unbind, &output_tensor_unbind,
        &output_grad_tensor_unbind, last_h_grad_unbind, last_c_grad_unbind,
        parameter_lists, weight_list_grad, layer_idx, time_step,
        has_sequence_length, is_bidirec, false);
  }
};
template <typename T>
void split_tensor_at_last_dim(const framework::ExecutionContext& context,
                              const platform::CPUDeviceContext& dev_ctx,
                              const Tensor* output,
                              std::vector<Tensor*>* output_vec,
                              const int& axis) {
  std::vector<const framework::Tensor*> shape_refer;
  (*output_vec)[0]->Resize(
      {output->dims()[0], output->dims()[1], output->dims()[2] / 2});
  (*output_vec)[0]->mutable_data<T>(context.GetPlace());
  (*output_vec)[1]->Resize(
      {output->dims()[0], output->dims()[1], output->dims()[2] / 2});
  (*output_vec)[1]->mutable_data<T>(context.GetPlace());
  shape_refer.emplace_back((*output_vec)[0]);
  shape_refer.emplace_back((*output_vec)[1]);
  math::SplitFunctor<platform::CPUDeviceContext, T> functor;
  functor(dev_ctx, *output, shape_refer, axis, output_vec);
}

template <typename T, typename GradCellType>
struct BidirGradLayer : GradLayer<T, GradCellType> {
  explicit BidirGradLayer(const GradCellType& cell)
      : GradLayer<T, GradCellType>(cell) {}
  virtual ~BidirGradLayer() {}
  void operator()(
      const framework::ExecutionContext& context, const Tensor* input,
      const Tensor* output, std::vector<Tensor>* init_h_unbind,
      std::vector<Tensor>* init_c_unbind, const TensorList& last_h_grad_unbind,
      const TensorList& last_c_grad_unbind,
      const TensorList& gate_tensor_unbind,
      const TensorList& state_tensor_unbind,
      const TensorList& act_state_tensor_unbind, const Tensor* output_grad,
      const std::vector<TensorList>& parameter_lists,
      const Tensor* sequence_length, Tensor* input_grad,
      TensorList* init_h_grad_unbind, TensorList* init_c_grad_unbind,
      std::vector<TensorList>* weight_list_grad, const int& layer_idx,
      const int& gate_num) {
    const bool& is_bidirec = context.Attr<bool>("is_bidirec");
    const int& time_step = input->dims()[0];
    const int& batch_size = input->dims()[1];
    const int& direction_num = is_bidirec ? 2 : 1;
    const int& hidden_size = context.Attr<int>("hidden_size");
    // split the output two tensor to output_forward, output_backward
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
1442
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    std::vector<Tensor*> output_vec;
    Tensor forward_output;
    Tensor backward_output;
    std::vector<Tensor> forward_output_tensor_unbind;
    std::vector<Tensor> backward_output_tensor_unbind;
    // in the last layer, we will use the output as the last hidden
    // the output just the concat the forward hidden, backward hidden, so just
    // split it
    // in other layer, we just split the hidden in the rows
    output_vec.emplace_back(&forward_output);
    output_vec.emplace_back(&backward_output);
    split_tensor_at_last_dim<T>(context, device_ctx, output, &output_vec, 2);
    forward_output_tensor_unbind = Unbind(*(output_vec[0]));
    backward_output_tensor_unbind = Unbind(*(output_vec[1]));

    std::vector<Tensor*> output_grad_vec;
    Tensor grad_forward_output;
    Tensor grad_backward_output;
    output_grad_vec.emplace_back(&grad_forward_output);
    output_grad_vec.emplace_back(&grad_backward_output);
    split_tensor_at_last_dim<T>(context, device_ctx, output_grad,
                                &output_grad_vec, 2);
    auto forward_output_grad_tensor_unbind = Unbind(*(output_grad_vec[0]));
    auto backward_output_grad_tensor_unbind = Unbind(*(output_grad_vec[1]));

    // the gate_tensor and the grad_gate_tensor must be unbind
    auto layer_gate_tensor = gate_tensor_unbind[layer_idx];
    layer_gate_tensor.Resize(
        {time_step * 2, batch_size, hidden_size * gate_num});
    auto layer_forward_gate_tensor = layer_gate_tensor.Slice(0, time_step);
    auto layer_backward_gate_tensor =
        layer_gate_tensor.Slice(time_step, 2 * time_step);
    auto layer_forward_gate_tensor_unbind = Unbind(layer_forward_gate_tensor);
    auto layer_backward_gate_tensor_unbind = Unbind(layer_backward_gate_tensor);

    Tensor layer_grad_gate_tensor;
    layer_grad_gate_tensor.Resize(layer_gate_tensor.dims());
    layer_grad_gate_tensor.mutable_data<T>(context.GetPlace());
    zero(device_ctx, &layer_grad_gate_tensor, static_cast<T>(0.0));
    auto layer_forward_grad_gate_tensor =
        layer_grad_gate_tensor.Slice(0, time_step);
    auto layer_backward_grad_gate_tensor =
        layer_grad_gate_tensor.Slice(time_step, 2 * time_step);
    auto layer_forward_grad_gate_tensor_unbind =
        Unbind(layer_forward_grad_gate_tensor);
    auto layer_backward_grad_gate_tensor_unbind =
        Unbind(layer_backward_grad_gate_tensor);

    Tensor layer_state_tensor;
    TensorList layer_state_tensor_unbind;
    if (state_tensor_unbind.size() > 0) {
      layer_state_tensor = state_tensor_unbind[layer_idx];
      layer_state_tensor.Resize(
          {time_step * direction_num, batch_size, hidden_size});
      layer_state_tensor_unbind = Unbind(layer_state_tensor);
    }

    Tensor layer_act_state_tensor;
    TensorList layer_act_state_tensor_unbind;
    if (act_state_tensor_unbind.size() > 0) {
      layer_act_state_tensor = act_state_tensor_unbind[layer_idx];
      layer_act_state_tensor.Resize(
          {time_step * direction_num, batch_size, hidden_size});
      layer_act_state_tensor_unbind = Unbind(layer_act_state_tensor);
    }
    const bool& has_sequence_length = sequence_length == nullptr ? false : true;

    this->run_rnn_grad_function(
        context, device_ctx, input, input_grad, sequence_length, init_h_unbind,
        init_c_unbind, init_h_grad_unbind, init_c_grad_unbind,
        &layer_forward_grad_gate_tensor, &layer_forward_gate_tensor_unbind,
        &layer_forward_grad_gate_tensor_unbind, &layer_state_tensor_unbind,
        &layer_act_state_tensor_unbind, &forward_output_tensor_unbind,
        &forward_output_grad_tensor_unbind, last_h_grad_unbind,
        last_c_grad_unbind, parameter_lists, weight_list_grad, layer_idx,
        time_step, has_sequence_length, is_bidirec, false);

    this->run_rnn_grad_function(
        context, device_ctx, input, input_grad, sequence_length, init_h_unbind,
        init_c_unbind, init_h_grad_unbind, init_c_grad_unbind,
        &layer_backward_grad_gate_tensor, &layer_backward_gate_tensor_unbind,
        &layer_backward_grad_gate_tensor_unbind, &layer_state_tensor_unbind,
        &layer_act_state_tensor_unbind, &backward_output_tensor_unbind,
        &backward_output_grad_tensor_unbind, last_h_grad_unbind,
        last_c_grad_unbind, parameter_lists, weight_list_grad, layer_idx,
        time_step, has_sequence_length, is_bidirec, true);
  }
};

template <typename T>
void backup_tensor(const framework::ExecutionContext& context, Tensor* dst,
                   Tensor* src) {
  auto& device_ctx =
      context.template device_context<platform::CPUDeviceContext>();
  dst->Resize(src->dims());
  dst->mutable_data<T>(context.GetPlace());
  framework::TensorCopy(*src, device_ctx.GetPlace(), device_ctx, dst);
}

template <typename T>
struct GradCell {
  virtual ~GradCell() {}
  virtual void operator()(const framework::ExecutionContext& context,
                          Tensor* gate_tensor, Tensor* state_tensor,
                          Tensor* act_state_tensor, Tensor* hidden_tensor,
                          const Tensor* weight_hh, Tensor* pre_hidden,
                          Tensor* pre_state, Tensor* grad_hidden,
                          Tensor* grad_state, Tensor* grad_gate,
                          Tensor* grad_weight_hh, Tensor* grad_pre_hidden,
1554 1555
                          Tensor* grad_pre_state, Tensor* grad_bias_hh,
                          const Tensor& mask_tensor,
1556
                          bool has_sequence_length) const {}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

  void postprocess_pre_hidden_grad(const framework::ExecutionContext& context,
                                   Tensor* grad_pre_hidden,
                                   Tensor* grad_pre_hidden_bak,
                                   Tensor* grad_pre_state,
                                   Tensor* grad_pre_state_bak,
                                   const Tensor& mask_tensor,
                                   bool has_sequence_length) const {
    if (has_sequence_length) {
      auto& place =
          *context.template device_context<platform::CPUDeviceContext>()
               .eigen_device();
      auto mask = framework::EigenMatrix<T>::From(
1570
          mask_tensor, phi::make_ddim({mask_tensor.dims()[1], 1}));
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
      auto mask_broadcast =
          mask.broadcast(Eigen::DSizes<int, 2>(1, grad_pre_hidden->dims()[2]));
      auto pre_hidden_grad = framework::EigenMatrix<T>::Reshape(
          *grad_pre_hidden, grad_pre_hidden->dims().size() - 1);
      auto pre_hidden_bak_grad = framework::EigenMatrix<T>::Reshape(
          *grad_pre_hidden_bak, grad_pre_hidden_bak->dims().size() - 1);
      pre_hidden_grad.device(place) =
          (1 - mask_broadcast) * pre_hidden_bak_grad +
          pre_hidden_grad * mask_broadcast;
      if (grad_pre_state) {
        auto pre_state_grad = framework::EigenMatrix<T>::Reshape(
            *grad_pre_state, grad_pre_state->dims().size() - 1);
        auto pre_state_bak_grad = framework::EigenMatrix<T>::Reshape(
            *grad_pre_state_bak, grad_pre_state_bak->dims().size() - 1);
        pre_state_grad.device(place) =
            (1 - mask_broadcast) * pre_state_bak_grad +
            pre_state_grad * mask_broadcast;
      }
    }
  }

1592 1593 1594 1595
  virtual void update_pre_hidden_grad(
      const framework::ExecutionContext& context, Tensor* grad_gate,
      const Tensor* weight_hh, Tensor* grad_pre_hidden,
      Tensor* grad_pre_hidden_bak, Tensor* grad_pre_state,
1596 1597
      Tensor* grad_pre_state_bak, const Tensor& mask_tensor,
      bool has_sequence_length) const {
1598 1599
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
1600
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(device_ctx);
1601 1602
    Tensor* grad_gate_tmp = grad_gate;
    auto mat_dim_a =
1603
        phi::funcs::CreateMatrixDescriptor(grad_gate_tmp->dims(), 0, false);
1604 1605
    mat_dim_a.height_ *= mat_dim_a.batch_size_;
    mat_dim_a.batch_size_ = 0;
1606
    auto mat_dim_b =
1607
        phi::funcs::CreateMatrixDescriptor(weight_hh->dims(), 0, false);
1608
    blas.MatMul(*grad_gate_tmp, mat_dim_a, *weight_hh, mat_dim_b,
1609 1610 1611 1612
                static_cast<T>(1.0), grad_pre_hidden, 0);
    postprocess_pre_hidden_grad(context, grad_pre_hidden, grad_pre_hidden_bak,
                                grad_pre_state, grad_pre_state_bak, mask_tensor,
                                has_sequence_length);
1613 1614 1615 1616
  }

  virtual void update_weight_hh_grad(const framework::ExecutionContext& context,
                                     Tensor* grad_gate, Tensor* pre_hidden,
1617
                                     Tensor* grad_weight_hh) const {
1618 1619
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
1620
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(device_ctx);
1621
    auto mat_dim_c =
1622
        phi::funcs::CreateMatrixDescriptor(grad_gate->dims(), 0, true);
1623 1624
    mat_dim_c.height_ *= mat_dim_c.batch_size_;
    mat_dim_c.batch_size_ = 0;
1625
    auto mat_dim_d =
1626
        phi::funcs::CreateMatrixDescriptor(pre_hidden->dims(), 0, false);
1627 1628
    mat_dim_d.height_ *= mat_dim_d.batch_size_;
    mat_dim_d.batch_size_ = 0;
1629
    blas.MatMul(*grad_gate, mat_dim_c, *pre_hidden, mat_dim_d,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
                static_cast<T>(1.0), grad_weight_hh, static_cast<T>(1.0));
  }
};

template <typename T, template <typename> class EigenActivationBackwardFunctor>
struct SimpleRNNGradCell : GradCell<T> {
  void operator()(const framework::ExecutionContext& context,
                  Tensor* gate_tensor, Tensor* state_tensor,
                  Tensor* act_state_tensor, Tensor* hidden_tensor,
                  const Tensor* weight_hh, Tensor* pre_hidden,
                  Tensor* pre_state, Tensor* grad_hidden, Tensor* grad_state,
                  Tensor* grad_gate, Tensor* grad_weight_hh,
                  Tensor* grad_pre_hidden, Tensor* grad_pre_state,
1643
                  Tensor* grad_bias_hh, const Tensor& mask_tensor,
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
                  bool has_sequence_length) const override {
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    Tensor grad_pre_hidden_bak;
    if (has_sequence_length) {
      backup_tensor<T>(context, &grad_pre_hidden_bak, grad_pre_hidden);
    }
    // h = act(z)
    // update dz
    auto dz = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(grad_gate, "Output", "dz", "Grad"));
    auto dh = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(grad_hidden, "Input", "dh", "Grad"));
    auto h = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(hidden_tensor, "Input", "h", "Value"));
    // useless, but need this argument to execute functor
    auto z = EigenVector<T>::Flatten(
        GET_DATA_SAFELY(gate_tensor, "Input", "z", "Value"));

    auto* place = device_ctx.eigen_device();
    EigenActivationBackwardFunctor<T> functor;
    functor(*place, z, h, dh, dz);

    // update grad_weight_hh, grad_pre_hidden
1668 1669 1670 1671
    this->update_pre_hidden_grad(context, grad_gate, weight_hh, grad_pre_hidden,
                                 &grad_pre_hidden_bak, nullptr, nullptr,
                                 mask_tensor, has_sequence_length);
    this->update_weight_hh_grad(context, grad_gate, pre_hidden, grad_weight_hh);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
  }
};

template <typename T>
struct GRUGradCell : GradCell<T> {
  void operator()(const framework::ExecutionContext& context,
                  Tensor* gate_tensor, Tensor* state_tensor,
                  Tensor* act_state_tensor, Tensor* hidden_tensor,
                  const Tensor* weight_hh, Tensor* pre_hidden,
                  Tensor* pre_state, Tensor* grad_hidden, Tensor* grad_state,
                  Tensor* grad_gate, Tensor* grad_weight_hh,
                  Tensor* grad_pre_hidden, Tensor* grad_pre_state,
1684
                  Tensor* grad_bias_hh, const Tensor& mask_tensor,
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
                  bool has_sequence_length) const override {
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    size_t frame_size = pre_hidden->dims()[2];
    size_t batch_size = pre_hidden->dims()[1];
    Tensor grad_pre_hidden_bak;
    if (has_sequence_length) {
      backup_tensor<T>(context, &grad_pre_hidden_bak, grad_pre_hidden);
    }
    // zero pre_hidden
1695
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> zero;
1696
    zero(device_ctx, grad_pre_hidden, static_cast<T>(0.0));
F
Feiyu Chan 已提交
1697 1698
    phi::funcs::GRUMetaValue<T> gru_value;
    phi::funcs::GRUMetaGrad<T> gru_grad;
1699 1700 1701
    gru_value.gate_value = gate_tensor->data<T>();
    gru_value.prev_out_value = pre_hidden->data<T>();
    gru_value.reset_output_value = state_tensor->data<T>();
1702 1703
    gru_value.state_weight = weight_hh->data<T>() + 2 * frame_size * frame_size;
    gru_value.gate_weight = weight_hh->data<T>();
1704 1705 1706 1707 1708 1709 1710 1711

    gru_grad.gate_grad = grad_gate->data<T>();
    gru_grad.reset_output_grad = grad_state->data<T>();
    gru_grad.prev_out_grad = grad_pre_hidden->data<T>();
    gru_grad.output_grad = grad_hidden->data<T>();
    gru_grad.gate_weight_grad = grad_weight_hh->data<T>();
    gru_grad.state_weight_grad =
        grad_weight_hh->data<T>() + 2 * frame_size * frame_size;
1712
    gru_grad.bias_hh_grad = grad_bias_hh->data<T>();
1713

F
Feiyu Chan 已提交
1714 1715 1716
    auto act_gate = phi::funcs::detail::GetActivationType("sigmoid_v2");
    auto act_node = phi::funcs::detail::GetActivationType("tanh_v2");
    phi::funcs::GRUUnitGradFunctorV2<platform::CPUDeviceContext, T>::compute(
1717 1718 1719
        device_ctx, gru_value, gru_grad, frame_size, batch_size, act_node,
        act_gate);

1720 1721 1722
    this->postprocess_pre_hidden_grad(context, grad_pre_hidden,
                                      &grad_pre_hidden_bak, nullptr, nullptr,
                                      mask_tensor, has_sequence_length);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
  }
};

template <typename T>
struct LSTMGradCell : GradCell<T> {
  void operator()(const framework::ExecutionContext& context,
                  Tensor* gate_tensor, Tensor* state_tensor,
                  Tensor* act_state_tensor, Tensor* hidden_tensor,
                  const Tensor* weight_hh, Tensor* pre_hidden,
                  Tensor* pre_state, Tensor* grad_hidden, Tensor* grad_state,
                  Tensor* grad_gate, Tensor* grad_weight_hh,
                  Tensor* grad_pre_hidden, Tensor* grad_pre_state,
1735
                  Tensor* grad_bias_hh, const Tensor& mask_tensor,
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
                  bool has_sequence_length) const override {
    auto& device_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    size_t frame_size = state_tensor->dims()[2];
    size_t batch_size = state_tensor->dims()[1];

    Tensor grad_pre_hidden_bak;
    Tensor grad_pre_state_bak;
    if (has_sequence_length) {
      backup_tensor<T>(context, &grad_pre_hidden_bak, grad_pre_hidden);
      backup_tensor<T>(context, &grad_pre_state_bak, grad_pre_state);
    }

F
Feiyu Chan 已提交
1749 1750
    phi::funcs::LstmMetaValue<T> lstm_value;
    phi::funcs::LstmMetaGrad<T> lstm_grad;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    create_lstm_value(&lstm_value);
    create_lstm_grad(&lstm_grad);
    lstm_value.gate_value = gate_tensor->data<T>();
    lstm_value.state_value = state_tensor->data<T>();
    lstm_value.state_active_value = act_state_tensor->data<T>();
    lstm_value.prev_state_value = pre_state->data<T>();

    lstm_grad.state_grad = grad_state->data<T>();
    lstm_grad.gate_grad = grad_gate->data<T>();
    lstm_grad.output_grad = grad_hidden->data<T>();
    lstm_grad.prev_state_grad = grad_pre_state->data<T>();

    lstm_value.output_value = nullptr;
    lstm_grad.state_active_grad = nullptr;

F
Feiyu Chan 已提交
1766 1767 1768
    auto gate_act = phi::funcs::detail::GetActivationType("sigmoid_v2");
    auto state_act = phi::funcs::detail::GetActivationType("tanh_v2");
    auto cand_act = phi::funcs::detail::GetActivationType("tanh_v2");
1769 1770

    T cell_clip = 0.0;
F
Feiyu Chan 已提交
1771
    phi::funcs::LstmUnitGradFunctor<platform::CPUDeviceContext, T>::compute(
1772 1773
        device_ctx, lstm_value, lstm_grad, frame_size, batch_size, cell_clip,
        gate_act, state_act, cand_act, false);
1774 1775 1776 1777
    this->update_pre_hidden_grad(
        context, grad_gate, weight_hh, grad_pre_hidden, &grad_pre_hidden_bak,
        grad_pre_state, &grad_pre_state_bak, mask_tensor, has_sequence_length);
    this->update_weight_hh_grad(context, grad_gate, pre_hidden, grad_weight_hh);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
  }
};

template <typename GradCellType,
          template <typename, typename> class SingleGradLayerT,
          template <typename, typename> class BidirGradLayerT, typename T>
void RnnGradFunc(const framework::ExecutionContext& context,
                 const int& gate_num) {
  // get the tensor pointer for the input
  auto* input = context.Input<Tensor>("Input");
  auto weight_list = context.MultiInput<Tensor>("WeightList");
  auto pre_state = context.MultiInput<Tensor>("PreState");

  const Tensor* init_h = pre_state[0];
  const Tensor* init_c = nullptr;
  if (is_lstm(context)) {
    init_c = pre_state[1];
  }
  auto* reserve_state = context.Input<Tensor>("Reserve");
  auto* dropout_state = context.Input<Tensor>("DropoutState");
  auto* output = context.Input<Tensor>("Out");
  auto* output_grad = context.Input<Tensor>(framework::GradVarName("Out"));
  auto state_grad = context.MultiInput<Tensor>(framework::GradVarName("State"));
  const Tensor* last_h_grad = state_grad[0];
  const Tensor* last_c_grad = nullptr;
  if (is_lstm(context)) {
    last_c_grad = state_grad[1];
  }

  bool has_seq_length = context.HasInput("SequenceLength");
  const Tensor* sequence_length = nullptr;
  if (has_seq_length) {
    sequence_length = context.Input<Tensor>("SequenceLength");
  }

  // get the tensor pointer for the output
  auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
  auto weight_grad_list = context.MultiOutput<framework::Tensor>(
      framework::GradVarName("WeightList"));
  auto pre_state_grad =
      context.MultiOutput<Tensor>(framework::GradVarName("PreState"));
  Tensor* init_h_grad = nullptr;
  Tensor* init_c_grad = nullptr;
  if (pre_state_grad.size() > 0) {  // has gradient
    init_h_grad = pre_state_grad[0];
    if (is_lstm(context)) {
      init_c_grad = pre_state_grad[1];
    }
  }

  // get the attributes for the calcluate
  const int& num_layers = context.Attr<int>("num_layers");
  const bool& is_bidirec = context.Attr<bool>("is_bidirec");
  const float& dropout_prob = context.Attr<float>("dropout_prob");
1832 1833
  bool is_test =
      context.HasAttr("is_test") ? context.Attr<bool>("is_test") : false;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

  // get the input_size, batch_size, time_step, hidden_size
  const int& time_step = input->dims()[0];
  const int& batch_size = input->dims()[1];
  const int& hidden_size = context.Attr<int>("hidden_size");
  const int& direction_num = is_bidirec ? 2 : 1;
  // allocate the memory and initization the input_grad
  Tensor input_grad_value;
  if (!input_grad) {
    input_grad = &input_grad_value;
  }
  input_grad->mutable_data<T>(input->dims(), context.GetPlace());

  if (init_h_grad) {
    init_h_grad->mutable_data<T>(init_h->dims(), context.GetPlace());
  }
  if (init_c_grad) {
    init_c_grad->mutable_data<T>(init_c->dims(), context.GetPlace());
  }

  // reset the parameter to sorted order and allocate the memory
  std::vector<TensorList> parameter_lists;
  parameter_lists.reserve(num_layers);
  reset_parameter_vector(weight_list, num_layers, gate_num, is_bidirec,
                         &parameter_lists);

  for (unsigned int i = 0; i < weight_grad_list.size(); ++i) {
    weight_grad_list[i]->mutable_data<T>(context.GetPlace());
  }
  std::vector<TensorList> parameter_lists_grad;
  parameter_lists_grad.reserve(num_layers);
  reset_parameter_vector(weight_grad_list, num_layers, gate_num, is_bidirec,
                         &parameter_lists_grad);

  // resolve the state of reverse_state
  Tensor gate_tensor;
  Tensor state_tensor;
  Tensor act_state_tensor;
  Tensor hidden_tensor;
  SplitReserveData(context, reserve_state, &gate_tensor, &state_tensor,
                   &act_state_tensor, &hidden_tensor, direction_num, time_step,
                   batch_size, hidden_size, gate_num, num_layers);
  int gate_num_tmp = gate_num;
  if (gate_num == 0) {
    gate_num_tmp = 1;
  }
  gate_tensor.Resize({num_layers, time_step * direction_num, batch_size,
                      hidden_size * gate_num_tmp});
  if (state_tensor.numel() > 0) {
    state_tensor.Resize(
        {num_layers, time_step * direction_num, batch_size, hidden_size});
  }
  if (act_state_tensor.numel() > 0) {
    act_state_tensor.Resize(
        {num_layers, time_step * direction_num, batch_size, hidden_size});
  }
  if (num_layers > 1) {
    hidden_tensor.Resize(
        {num_layers - 1, time_step, batch_size, hidden_size * direction_num});
  }
  // unbind
  auto last_h_grad_unbind = Unbind(*last_h_grad);
  auto gate_tensor_unbind = Unbind(gate_tensor);
  TensorList last_c_grad_unbind;
  if (last_c_grad) {
    last_c_grad_unbind = Unbind(*last_c_grad);
  }

  TensorList init_h_unbind, init_c_unbind;
  TensorList init_h_grad_unbind, init_c_grad_unbind;
  TensorList state_tensor_unbind, act_state_tensor_unbind;
  TensorList hidden_tensor_unbind;

  init_h_unbind = Unbind(*init_h);
  if (init_c) {
    init_c_unbind = Unbind(*init_c);
  }

  if (init_h_grad != nullptr) {
    init_h_grad_unbind = Unbind(*init_h_grad);
  }
  if (init_c_grad != nullptr) {
    init_c_grad_unbind = Unbind(*init_c_grad);
  }
  if (state_tensor.numel() > 0) {
    state_tensor_unbind = Unbind(state_tensor);
  }
  if (act_state_tensor.numel() > 0) {
    act_state_tensor_unbind = Unbind(act_state_tensor);
  }
  if (num_layers > 1) {
    hidden_tensor_unbind = Unbind(hidden_tensor);
  }
  // squeeze the hidden first dim
  for (unsigned int i = 0; i < hidden_tensor_unbind.size(); i++) {
    hidden_tensor_unbind[i].Resize(
1930 1931
        phi::slice_ddim(hidden_tensor_unbind[i].dims(), 1,
                        hidden_tensor_unbind[i].dims().size()));
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
  }
  // add the output tensor to the hidden vector
  Tensor tmp;
  hidden_tensor_unbind.emplace_back(tmp);
  hidden_tensor_unbind[num_layers - 1].ShareDataWith(*output);

  GradCellType cell;
  Tensor layer_input;
  Tensor layer_output;
  Tensor* layer_input_grad_holder = nullptr;
  Tensor tmp_out;
  tmp_out.ShareDataWith(*output_grad);
  Tensor* layer_output_grad_holder = &tmp_out;
  Tensor input_grad_temp;
  Tensor output_grad_temp;

  bool has_allocate_mem = false;
  for (int i = num_layers - 1; i >= 0; --i) {
    // the layer input output had saved, just use the data
    if (i > 0) {
1952 1953 1954 1955 1956 1957
      if (layer_input.numel() == 0) {
        layer_input.Resize(hidden_tensor_unbind[i - 1].dims());
        layer_input.mutable_data<T>(context.GetPlace());
      }
      dropout_helper<T>(context, &hidden_tensor_unbind[i - 1], &layer_input,
                        dropout_state, dropout_prob);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    } else {
      layer_input.ShareDataWith(*input);
    }
    layer_output.ShareDataWith(hidden_tensor_unbind[i]);
    if (num_layers == 1) {
      layer_input_grad_holder = input_grad;
    } else {
      if (i == num_layers - 1) {
        input_grad_temp.Resize(layer_input.dims());
        input_grad_temp.mutable_data<T>(context.GetPlace());
        layer_input_grad_holder = &input_grad_temp;
      }
    }
    if (is_bidirec) {
      BidirGradLayerT<T, GradCellType> layer(cell);
      layer(context, &layer_input, &layer_output, &init_h_unbind,
            &init_c_unbind, last_h_grad_unbind, last_c_grad_unbind,
            gate_tensor_unbind, state_tensor_unbind, act_state_tensor_unbind,
            layer_output_grad_holder, parameter_lists, sequence_length,
            layer_input_grad_holder, &init_h_grad_unbind, &init_c_grad_unbind,
            &parameter_lists_grad, i, gate_num_tmp);
    } else {
      SingleGradLayerT<T, GradCellType> layer(cell);
      layer(context, &layer_input, &layer_output, &init_h_unbind,
            &init_c_unbind, last_h_grad_unbind, last_c_grad_unbind,
            gate_tensor_unbind, state_tensor_unbind, act_state_tensor_unbind,
            layer_output_grad_holder, parameter_lists, sequence_length,
            layer_input_grad_holder, &init_h_grad_unbind, &init_c_grad_unbind,
            &parameter_lists_grad, i, gate_num_tmp);
    }

    // calcluate the dropout gradient for the layer_input_grad_holder
    // dropout_state save in the forward process
    if (i > 0) {
      if ((!is_test) && (dropout_prob != 0)) {
        dropout_cpu_grad_function_inplace<T>(context, layer_input_grad_holder,
                                             dropout_state, dropout_prob);
      }
    }

    if (i - 1 == 0) {
      layer_output_grad_holder = input_grad;
    } else {
      if (!has_allocate_mem) {
        output_grad_temp.Resize(layer_input_grad_holder->dims());
        output_grad_temp.mutable_data<T>(context.GetPlace());
        layer_output_grad_holder = &output_grad_temp;
        has_allocate_mem = true;
      }
    }
    SwapPoniter(&layer_input_grad_holder, &layer_output_grad_holder);
  }
}

template <typename DeviceContext, typename T>
class RNNCPUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int gate_num = 4;
    if (is_lstm(ctx)) {
      RnnGradFunc<LSTMGradCell<T>, SingleGradLayer, BidirGradLayer, T>(
          ctx, gate_num);
    } else if (is_gru(ctx)) {
      gate_num = 3;
      RnnGradFunc<GRUGradCell<T>, SingleGradLayer, BidirGradLayer, T>(ctx,
                                                                      gate_num);
      // run gru
    } else if (is_rnn_relu(ctx)) {
      gate_num = 1;
      RnnGradFunc<SimpleRNNGradCell<T, ReluGradFunctor>, SingleGradLayer,
                  BidirGradLayer, T>(ctx, gate_num);
      // run rnn
    } else if (is_rnn_tanh(ctx)) {
      gate_num = 1;
      RnnGradFunc<SimpleRNNGradCell<T, TanhGradFunctor>, SingleGradLayer,
                  BidirGradLayer, T>(ctx, gate_num);
    }
  }
};
}  // namespace operators
}  // namespace paddle