CosSimOpGpu.cu 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liaogang 已提交
15
#include "CosSimOp.h"
16
#include "hl_base.h"
17
#include "hl_device_functions.cuh"
18 19 20

namespace paddle {

L
liaogang 已提交
21
template <int block_size>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
__global__ void KeCosSim(real* output,
                         const real* input1,
                         const real* input2,
                         int width,
                         int input1_height,
                         int input2_height,
                         real scale) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  __shared__ real xx[block_size];
  __shared__ real yy[block_size];
  __shared__ real xy[block_size];

  xx[tid] = 0.0;
  yy[tid] = 0.0;
  xy[tid] = 0.0;
  __syncthreads();

  input1 += ty * width;
  if (input2_height > 1) {
    input2 += ty * width;
  }
  for (int index = tid; index < width; index += block_size) {
    real x = input1[index];
    real y = input2[index];
    xx[tid] += x * x;
    yy[tid] += y * y;
    xy[tid] += x * y;
  }
  __syncthreads();

  for (int s = block_size / 2; s > 0; s >>= 1) {
    if (tid < s) {
      xx[tid] += xx[tid + s];
      yy[tid] += yy[tid + s];
      xy[tid] += xy[tid + s];
    }
    __syncthreads();
  }
  if (tid == 0) {
    output[ty] = scale * xy[0] / (sqrt(xx[0]) * sqrt(yy[0]));
  }
}

void hlCossim(real* output,
68 69 70 71 72 73
              const real* input1,
              const real* input2,
              size_t width,
              size_t input1_height,
              size_t input2_height,
              real scale) {
74 75 76 77 78 79 80
  CHECK_NOTNULL(output);
  CHECK_NOTNULL(input1);
  CHECK_NOTNULL(input2);
  const int block_size = 256;
  dim3 threads(block_size, 1);
  dim3 grid(1, input1_height);

L
liaogang 已提交
81 82
  KeCosSim<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>(
      output, input1, input2, width, input1_height, input2_height, scale);
83
  CHECK_SYNC("hlCossim failed");
84 85 86
}

template <>
87 88 89
void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix& out_mat,
                                    const GpuMatrix& in1_mat,
                                    const GpuMatrix& in2_mat,
90
                                    real scale) {
91 92
  CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
  CHECK(in1_mat.useGpu_ == true && in2_mat.useGpu_ == true)
93 94
      << "Matrix type are not GPU";

95 96 97 98 99
  size_t dim = in1_mat.getWidth();
  real* out = out_mat.getData();
  const real* x = in1_mat.getData();
  const real* y = in2_mat.getData();
  hlCossim(out, x, y, dim, in1_mat.getHeight(), in2_mat.getHeight(), scale);
100 101
}

L
liaogang 已提交
102
template <int block_size>
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
__global__ void KeCosSimDerivative(const real* grad,
                                   const real* output,
                                   const real* prev_out_x,
                                   const real* prev_out_y,
                                   real* prev_grad_x,
                                   real* prev_grad_y,
                                   size_t width,
                                   size_t input1_height,
                                   size_t input2_height,
                                   real scale) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  __shared__ real xx[block_size];
  __shared__ real yy[block_size];
  __shared__ real xy[block_size];

  xx[tid] = 0.0;
  yy[tid] = 0.0;
  xy[tid] = 0.0;
  __syncthreads();

  prev_out_x += ty * width;
  prev_grad_x += ty * width;
  if (input2_height > 1) {
    prev_out_y += ty * width;
    prev_grad_y += ty * width;
  }
  for (int index = tid; index < width; index += block_size) {
    real x = prev_out_x[index];
    real y = prev_out_y[index];
    xx[tid] += x * x;
    yy[tid] += y * y;
    xy[tid] += x * y;
  }
  __syncthreads();

  for (int s = block_size / 2; s > 0; s >>= 1) {
    if (tid < s) {
      xx[tid] += xx[tid + s];
      yy[tid] += yy[tid + s];
      xy[tid] += xy[tid + s];
    }
    __syncthreads();
  }
  if (xy[0] == 0) {
    real reciprocal = 1.0 / (sqrt(xx[0]) * sqrt(yy[0]));
    for (int index = tid; index < width; index += block_size) {
L
liaogang 已提交
151
      prev_grad_x[index] += scale * grad[ty] * prev_out_y[index] * reciprocal;
152
      if (input2_height > 1) {
L
liaogang 已提交
153
        prev_grad_y[index] += scale * grad[ty] * prev_out_x[index] * reciprocal;
154
      } else {
L
liaogang 已提交
155 156 157
        paddle::paddleAtomicAdd(
            prev_grad_y + index,
            scale * grad[ty] * prev_out_x[index] * reciprocal);
158 159 160 161 162 163 164
      }
    }
  } else {
    real reciprocalXY = 1.0 / xy[0];
    real reciprocalSquareSumX = 1.0 / xx[0];
    real reciprocalSquareSumY = 1.0 / yy[0];
    for (int index = tid; index < width; index += block_size) {
L
liaogang 已提交
165 166 167
      prev_grad_x[index] +=
          output[ty] * grad[ty] * (prev_out_y[index] * reciprocalXY -
                                   prev_out_x[index] * reciprocalSquareSumX);
168
      if (input2_height > 1) {
L
liaogang 已提交
169 170 171
        prev_grad_y[index] +=
            output[ty] * grad[ty] * (prev_out_x[index] * reciprocalXY -
                                     prev_out_y[index] * reciprocalSquareSumY);
172
      } else {
L
liaogang 已提交
173 174 175 176
        paddle::paddleAtomicAdd(
            prev_grad_y + index,
            output[ty] * grad[ty] * (prev_out_x[index] * reciprocalXY -
                                     prev_out_y[index] * reciprocalSquareSumY));
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      }
    }
  }
}

void hlCossimDerivative(const real* grad,
                        const real* output,
                        const real* prev_out_x,
                        const real* prev_out_y,
                        real* prev_grad_x,
                        real* prev_grad_y,
                        size_t width,
                        size_t input1_height,
                        size_t input2_height,
                        real scale) {
  CHECK_NOTNULL(grad);
  CHECK_NOTNULL(output);
  CHECK_NOTNULL(prev_out_x);
  CHECK_NOTNULL(prev_out_y);
  CHECK_NOTNULL(prev_grad_x);
  CHECK_NOTNULL(prev_grad_y);
  const int block_size = 256;
  dim3 threads(block_size, 1);
  dim3 grid(1, input1_height);
L
liaogang 已提交
201 202 203 204 205 206 207 208 209 210 211
  KeCosSimDerivative<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>(
      grad,
      output,
      prev_out_x,
      prev_out_y,
      prev_grad_x,
      prev_grad_y,
      width,
      input1_height,
      input2_height,
      scale);
212 213 214 215
  CHECK_SYNC("hlCossimDerivate failed");
}

template <>
216 217 218 219 220 221
void CosSimBackward<DEVICE_TYPE_GPU>(const GpuMatrix& out_grad,
                                     const GpuMatrix& out_val,
                                     const GpuMatrix& in1_val,
                                     const GpuMatrix& in2_val,
                                     GpuMatrix& in1_grad,
                                     GpuMatrix& in2_grad,
222
                                     real scale) {
223 224
  CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
        in2_val.getData() && in1_grad.getData() && in2_grad.getData());
L
liaogang 已提交
225 226 227
  CHECK(out_grad.useGpu_ && out_val.useGpu_ && in1_val.useGpu_ &&
        in2_val.useGpu_ && in1_grad.useGpu_ && in2_grad.useGpu_)
      << "Matrix types are not equally GPU";
228

229 230 231 232 233 234 235
  size_t dim = in1_val.getWidth();
  const real* grad = out_grad.getData();
  const real* out = out_val.getData();
  const real* prev_out_x = in1_val.getData();
  const real* prev_out_y = in2_val.getData();
  real* prev_grad_x = in1_grad.getData();
  real* prev_grad_y = in2_grad.getData();
236 237 238 239 240 241 242
  hlCossimDerivative(grad,
                     out,
                     prev_out_x,
                     prev_out_y,
                     prev_grad_x,
                     prev_grad_y,
                     dim,
243 244
                     in1_val.getHeight(),
                     in2_val.getHeight(),
245 246 247
                     scale);
}

248
}  // namespace paddle