backward_api_gen.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import re

20
from api_base import BaseAPI
21 22


23
class BackwardAPI(BaseAPI):
24
    def __init__(self, backward_item_yaml):
25 26
        super(BackwardAPI, self).__init__(backward_item_yaml)
        self.check_args(backward_item_yaml['forward'])
27
        self.no_need_buffer = self.parse_no_need_buffer(backward_item_yaml)
28 29 30

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['backward_api']
31

32 33 34
    def parse_forward_config(self, forward_config):
        # api_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
        result = re.search(
35
            r"(?P<api>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
36 37
            forward_config)
        api = result.group('api')
38
        _, outputs, _, = self.parse_output(self.api, result.group('outputs'))
39
        outputs = [item.split('@')[0] for item in outputs]
40 41
        fw_inputs, fw_attrs = self.parse_input_and_attr(api,
                                                        result.group('args'))
42

43
        return api, fw_inputs, fw_attrs, outputs
44

45 46 47 48 49 50 51 52 53
    def parse_no_need_buffer(self, api_item_yaml):
        no_need_buffer = []
        if 'no_need_buffer' in api_item_yaml:
            no_need_buffer = [
                item.strip()
                for item in api_item_yaml['no_need_buffer'].split(',')
            ]
        return no_need_buffer

54
    def check_args(self, forward_config):
55 56 57 58 59
        # parse the forward and backward config
        _, fw_inputs, fw_attrs, fw_outputs = self.parse_forward_config(
            forward_config)

        # check the inputs of backward
60
        for input in self.inputs['names']:
61
            if input not in fw_inputs['names'] and input not in fw_outputs:
62 63 64
                if input.endswith('_grad'):
                    original_name = input[:-5]
                    assert original_name in fw_outputs, \
65 66
                        f"{self.api} : Input Tensor error: the input tensor({input}) of backward should be an input or output or grad of output in forward api. \
                         Please check the forward of {self.api} in yaml."
67 68

        # check the attributes of backward
69
        for attr in self.attrs['names']:
70 71 72
            assert (attr in fw_attrs['names'] and self.attrs['attr_info'][attr][0] == fw_attrs['attr_info'][attr][0]) or \
                 self.attrs['attr_info'][attr][1] is not None, \
                f"{self.api} : Attribute error: The attribute({attr}) of backward isn't consistent with forward api or doesn't have default value. \
73
                 Please check the args of {self.api} in yaml."
74 75

        # check the output of backward
76
        assert len(self.outputs['types']) <= len(fw_inputs['names']), \
77
            f"{self.api} : Output error: The number of outputs should be less then the number of inputs of forward api. \
78
             Please check the output of {self.api} in yaml."
79

80
    def get_declare_args(self, inplace_flag=False):
81 82
        return self.get_define_args()

83
    def get_define_args(self, inplace_flag=False):
84 85 86 87
        out_type_map = {
            'Tensor': 'Tensor*',
            'std::vector<Tensor>': 'std::vector<Tensor*>'
        }
88
        intputs_and_attrs = super(BackwardAPI, self).get_define_args()
89 90 91 92 93 94 95 96 97 98
        outs = []
        for i, name in enumerate(self.outputs['names']):
            outs.append(out_type_map[self.outputs['types'][i]] + ' ' +
                        name.split('@')[0])
        result = intputs_and_attrs + ', ' + ", ".join(outs)
        return result

    def gene_return_code(self):
        return ""

99 100 101 102 103 104 105 106 107 108 109 110 111
    def gene_kernel_backend_select(self):
        all_no_need_buffer = True
        for in_name in self.inputs['names']:
            if in_name not in self.no_need_buffer:
                all_no_need_buffer = False

        if all_no_need_buffer:
            return """
  kernel_backend = ParseBackend(egr::Controller::Instance().GetExpectedPlace());
"""
        else:
            return super().gene_kernel_backend_select()

112
    def get_return_type(self, inplace_flag=False):
113
        return 'void'
114

115 116 117 118 119
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
Z
zyfncg 已提交
120
        kernel_output = ""
121
        output_names = []
Z
zyfncg 已提交
122 123 124
        output_create = ""

        if len(output_type_list) == 1:
125 126
            kernel_output = 'kernel_out'
            output_names.append('kernel_out')
127 128 129
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
130
            output_create = ""
131 132 133 134
            if output_type_list[0] == 'std::vector<Tensor>':
                assert self.outputs['out_size_expr'] is not None, \
                     f"{api_name}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api."
                output_create = output_create + f"""
135
{code_indent}  auto kernel_out = {set_out_func}(&{self.outputs['names'][0]});"""
136 137 138

            else:
                output_create = output_create + f"""
139
{code_indent}  auto kernel_out = {set_out_func}(kernel_backend, {self.outputs['names'][0]});"""
Z
zyfncg 已提交
140 141

        elif len(output_type_list) > 1:
142
            output_create = ""
Z
zyfncg 已提交
143
            for i, out_type_item in enumerate(output_type_list):
144 145
                kernel_output = kernel_output + f'kernel_out_{i}, '
                output_names.append(f'kernel_out_{i}')
146
                if out_type_item == 'Tensor':
147 148 149
                    if inplace_flag and self.inplace_map is not None and self.outputs[
                            'names'][i] in self.inplace_map:
                        output_create = output_create + f"""
150
{code_indent}  *{self.outputs['names'][i]} = {self.inplace_map[self.outputs['names'][i]]};"""
151

152
                    output_create = output_create + f"""
153
{code_indent}  auto kernel_out_{i} = {set_out_func}(kernel_backend, {self.outputs['names'][i]});"""
154

155
                else:
156 157 158
                    if inplace_flag and self.inplace_map is not None and self.outputs[
                            'names'][i] in self.inplace_map:
                        output_create = output_create + f"""
159
{code_indent}  *{self.outputs['names'][i]} = {self.inplace_map[self.outputs['names'][i]]};"""
160

161 162 163
                    assert self.outputs['out_size_expr'][i] is not None, \
                        f"{api_name}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api."
                    output_create = output_create + f"""
164
{code_indent}  auto kernel_out_{i} = {set_out_func}(&{self.outputs['names'][i]});"""
Z
zyfncg 已提交
165 166 167 168 169

            kernel_output = kernel_output[:-2]
        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
170
                    self.api))
Z
zyfncg 已提交
171

172
        return kernel_output, output_names, output_create
Z
zyfncg 已提交
173

174 175 176 177 178
    def gene_invoke_code(self, invoke_code, params_code):
        inveke_func_name = invoke_code.split('(')[0].strip()
        if inveke_func_name.endswith('_grad') or inveke_func_name.endswith(
                '_grad_impl'):
            return f"""
179
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
180 181 182 183 184
  {invoke_code};
}}"""

        else:
            return f"""
185
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
186 187 188
  *{self.outputs['names'][0].split('@')[0]} = {invoke_code};
}}"""

189 190 191 192 193

def header_include():
    return """
#include <tuple>

194 195
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
196
#include "paddle/phi/common/int_array.h"
197
#include "paddle/utils/optional.h"
198 199 200 201 202 203 204 205 206 207
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

208
#include "paddle/phi/api/lib/api_custom_impl.h"
209
#include "paddle/phi/api/lib/api_gen_utils.h"
210 211 212 213 214 215
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/infermeta/backward.h"
216
#include "paddle/phi/infermeta/unary.h"
217

218
#include "paddle/fluid/eager/api/utils/global_utils.h"
219
#include "paddle/fluid/platform/profiler/event_tracing.h"
Z
zyfncg 已提交
220 221

DECLARE_bool(conv2d_disable_cudnn);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
"""


def backward_api_namespace():
    return ("""
namespace paddle {
namespace experimental {

""", """

}  // namespace experimental
}  // namespace paddle
""")


def generate_backward_api(backward_yaml_path, header_file_path,
                          source_file_path):

    with open(backward_yaml_path, 'r') as f:
        bw_apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = backward_api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

251
    include_header_file = "paddle/phi/api/backward/backward_api.h"
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for bw_api in bw_apis:
        bw_api = BackwardAPI(bw_api)
        header_file.write(bw_api.gene_api_declaration())
        source_file.write(bw_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ backward API files')
    parser.add_argument(
        '--backward_yaml_path',
        help='path to backward yaml file',
        default='python/paddle/utils/code_gen/backward.yaml')
    parser.add_argument(
        '--backward_header_path',
        help='output of generated backward header code file',
277
        default='paddle/phi/api/backward/backward_api.h')
278 279 280 281

    parser.add_argument(
        '--backward_source_path',
        help='output of generated backward source code file',
282
        default='paddle/phi/api/lib/backward_api.cc')
283 284 285 286 287 288 289 290 291 292 293 294 295

    options = parser.parse_args()

    backward_yaml_path = options.backward_yaml_path
    header_file_path = options.backward_header_path
    source_file_path = options.backward_source_path

    generate_backward_api(backward_yaml_path, header_file_path,
                          source_file_path)


if __name__ == '__main__':
    main()