fleet_deep_ctr.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import time

import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distributed_transpiler import fleet
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig

import ctr_dataset_reader

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser(description="PaddlePaddle Fleet ctr")

    # the following arguments is used for distributed train, if is_local == false, then you should set them
    parser.add_argument(
        '--role',
        type=str,
        default='pserver',  # trainer or pserver
        help='The path for model to store (default: models)')
    parser.add_argument(
        '--endpoints',
        type=str,
        default='127.0.0.1:6000',
        help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001')
    parser.add_argument(
        '--current_endpoint',
        type=str,
        default='127.0.0.1:6000',
        help='The path for model to store (default: 127.0.0.1:6000)')
    parser.add_argument(
        '--trainer_id',
        type=int,
        default=0,
        help='The path for model to store (default: models)')
    parser.add_argument(
        '--trainers',
        type=int,
        default=1,
        help='The num of trainers, (default: 1)')

    return parser.parse_args()


def model():
    dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
    )
    """ network definition """
    dnn_data = fluid.layers.data(
        name="dnn_data",
        shape=[-1, 1],
        dtype="int64",
        lod_level=1,
        append_batch_size=False)
    lr_data = fluid.layers.data(
        name="lr_data",
        shape=[-1, 1],
        dtype="int64",
        lod_level=1,
        append_batch_size=False)
    label = fluid.layers.data(
        name="click",
        shape=[-1, 1],
        dtype="int64",
        lod_level=0,
        append_batch_size=False)

    datas = [dnn_data, lr_data, label]

    # build dnn model
    dnn_layer_dims = [128, 64, 32, 1]
    dnn_embedding = fluid.layers.embedding(
        is_distributed=False,
        input=dnn_data,
        size=[dnn_input_dim, dnn_layer_dims[0]],
        param_attr=fluid.ParamAttr(
            name="deep_embedding",
            initializer=fluid.initializer.Constant(value=0.01)),
        is_sparse=True)
    dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding, pool_type="sum")
    dnn_out = dnn_pool
    for i, dim in enumerate(dnn_layer_dims[1:]):
        fc = fluid.layers.fc(
            input=dnn_out,
            size=dim,
            act="relu",
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01)),
            name='dnn-fc-%d' % i)
        dnn_out = fc

    # build lr model
    lr_embbding = fluid.layers.embedding(
        is_distributed=False,
        input=lr_data,
        size=[lr_input_dim, 1],
        param_attr=fluid.ParamAttr(
            name="wide_embedding",
            initializer=fluid.initializer.Constant(value=0.01)),
        is_sparse=True)
    lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

    merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

    predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
    acc = fluid.layers.accuracy(input=predict, label=label)
    auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                          label=label)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return datas, avg_cost, predict, train_file_path


def train(args):
    datas, avg_cost, predict, train_file_path = model()

    endpoints = args.endpoints.split(",")
    if args.role.upper() == "PSERVER":
        current_id = endpoints.index(args.current_endpoint)
    else:
        current_id = 0
    role = role_maker.UserDefinedRoleMaker(
        current_id=current_id,
        role=role_maker.Role.WORKER
        if args.role.upper() == "TRAINER" else role_maker.Role.SERVER,
        worker_num=args.trainers,
        server_endpoints=endpoints)

    exe = fluid.Executor(fluid.CPUPlace())
    fleet.init(role)

    strategy = DistributeTranspilerConfig()
    strategy.sync_mode = False

    optimizer = fluid.optimizer.SGD(learning_rate=0.0001)
    optimizer = fleet.distributed_optimizer(optimizer, strategy)
    optimizer.minimize(avg_cost)

    if fleet.is_server():
        logger.info("run pserver")

        fleet.init_server()
        fleet.run_server()
    elif fleet.is_worker():
        logger.info("run trainer")

        fleet.init_worker()
        exe.run(fleet.startup_program)

        thread_num = 2
        filelist = []
        for _ in range(thread_num):
            filelist.append(train_file_path)

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(128)
        dataset.set_use_var(datas)
        pipe_command = 'python ctr_dataset_reader.py'
        dataset.set_pipe_command(pipe_command)

        dataset.set_filelist(filelist)
        dataset.set_thread(thread_num)

        for epoch_id in range(10):
            logger.info("epoch {} start".format(epoch_id))
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                program=fleet.main_program,
                dataset=dataset,
                fetch_list=[avg_cost],
                fetch_info=["cost"],
                print_period=100,
                debug=False)
            pass_time = time.time() - pass_start
            logger.info("epoch {} finished, pass_time {}".format(epoch_id,
                                                                 pass_time))
        fleet.stop_worker()


if __name__ == "__main__":
    args = parse_args()
    train(args)