op_registry.h 10.8 KB
Newer Older
1 2
#pragma once

3
#include <algorithm>
Y
Yu Yang 已提交
4
#include <type_traits>
5 6
#include <unordered_map>
#include <unordered_set>
Q
Qiao Longfei 已提交
7
#include "paddle/framework/attr_checker.h"
8 9
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
Q
Qiao Longfei 已提交
10
#include "paddle/framework/operator.h"
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);

  static Attribute GetAttrValue(const AttrDesc& attr_desc) {
    switch (attr_desc.type()) {
      case paddle::framework::AttrType::INT: {
        return attr_desc.i();
      }
      case paddle::framework::AttrType::FLOAT: {
        return attr_desc.f();
      }
      case paddle::framework::AttrType::STRING: {
        return attr_desc.s();
      }
      case paddle::framework::AttrType::INTS: {
        std::vector<int> val(attr_desc.ints_size());
        for (int i = 0; i < attr_desc.ints_size(); ++i) {
          val[i] = attr_desc.ints(i);
        }
        return val;
      }
      case paddle::framework::AttrType::FLOATS: {
        std::vector<float> val(attr_desc.floats_size());
        for (int i = 0; i < attr_desc.floats_size(); ++i) {
          val[i] = attr_desc.floats(i);
        }
        return val;
      }
      case paddle::framework::AttrType::STRINGS: {
        std::vector<std::string> val(attr_desc.strings_size());
        for (int i = 0; i < attr_desc.strings_size(); ++i) {
          val[i] = attr_desc.strings(i);
        }
        return val;
      }
    }
    PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
    return boost::blank();
  }
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

64 65
  ~OpProtoAndCheckerMaker() { CheckNoDuplicatedAttrs(); }

66
 protected:
67 68
  void AddInput(const std::string& name, const std::string& comment,
                bool multiple = false) {
69
    auto input = proto_->mutable_inputs()->Add();
70 71
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
72 73 74 75 76 77 78 79
    input->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleInput();
    }
  }

  void AddInputs(const std::string& name, const std::string& comment) {
    AddInput(name, comment, true);
80 81
  }

82 83
  void AddOutput(const std::string& name, const std::string& comment,
                 bool temporary = false, bool multiple = false) {
84
    auto output = proto_->mutable_outputs()->Add();
85 86
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
87 88 89 90 91 92 93 94 95 96 97 98 99
    output->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleOutput();
    }
    output->set_temporary(temporary);
    if (temporary) {
      SetHasTemporaryOutput();
    }
  }

  void AddOutputs(const std::string& name, const std::string& comment,
                  bool temporary = false) {
    AddOutput(name, comment, temporary, true);
100 101 102 103
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
104 105
                               const std::string& comment,
                               bool generated = false) {
106
    auto attr = proto_->mutable_attrs()->Add();
107 108
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
109
    attr->set_generated(generated);
110 111 112 113 114 115 116 117
    AttrTypeHelper::SetAttrType<T>(attr);
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

  void CheckNoDuplicatedAttrs() {
    std::unordered_set<std::string> names;
    size_t cnt = 0;
    for (auto& attr : proto_->attrs()) {
      names.insert(attr.name());
      ++cnt;
    }
    PADDLE_ENFORCE(names.size() == cnt,
                   "Cannot register two attribute in same name!");
  }

177 178
  OpProto* proto_;
  OpAttrChecker* op_checker_;
179 180 181
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
182 183 184
};

class OpRegistry {
Q
Qiao Longfei 已提交
185
  using OpCreator = std::function<OperatorBase*()>;
186 187 188 189

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
190 191 192
    creators()[op_type] = [] { return new OpType; };
    OpProto& op_proto = protos()[op_type];
    OpAttrChecker& op_checker = op_checkers()[op_type];
193
    ProtoMakerType(&op_proto, &op_checker);
Y
Yu Yang 已提交
194 195 196 197 198
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
199 200
  }

Q
Qiao Longfei 已提交
201
  static OperatorPtr CreateOp(const OpDesc& op_desc) {
202
    std::string op_type = op_desc.type();
Q
Qiao Longfei 已提交
203
    OperatorPtr op(creators().at(op_type)());
Q
Qiao Longfei 已提交
204
    op->desc_ = op_desc;
205 206 207 208 209 210 211
    op->inputs_.reserve((size_t)op_desc.inputs_size());
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
              std::back_inserter(op->inputs_));
    op->outputs_.reserve((size_t)op_desc.outputs_size());
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
              std::back_inserter(op->outputs_));
    for (auto& attr : op_desc.attrs()) {
Q
Qiao Longfei 已提交
212
      op->attrs_[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
213
    }
Q
Qiao Longfei 已提交
214
    op_checkers().at(op_type).Check(op->attrs_);
Q
Qiao Longfei 已提交
215
    op->Init();
216 217 218 219
    return op;
  }

 private:
220 221 222 223
  static std::unordered_map<std::string, OpCreator>& creators() {
    static std::unordered_map<std::string, OpCreator> creators_;
    return creators_;
  }
224

225 226 227 228 229 230 231 232 233 234
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };
};
235 236 237 238

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
239
  OpRegisterHelper(const char* op_type) {
240 241 242 243
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

Y
Yu Yang 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

#define REGISTER_OP_KERNEL(type, GPU_OR_CPU, PlaceType, KernelType)       \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __reg_op_kernel_##type##_##GPU_OR_CPU##__,                          \
      "REGISTER_OP_KERNEL must be in global namespace");                  \
  struct __op_kernel_register__##type##__ {                               \
    __op_kernel_register__##type##__() {                                  \
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
          .reset(new KernelType());                                       \
    }                                                                     \
  };                                                                      \
  static __op_kernel_register__##type##__ __reg_kernel_##type##__;        \
  int __op_kernel_register_##type##_handle_##GPU_OR_CPU##__() { return 0; }

#define REGISTER_OP_GPU_KERNEL(type, KernelType) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, KernelType)

#define REGISTER_OP_CPU_KERNEL(type, KernelType) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, KernelType)

#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
286 287 288 289 290 291 292 293
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305

#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type)           \
  USE_OP_WITHOUT_KERNEL(op_type); \
  USE_OP_KERNEL(op_type, CPU);

#else
#define USE_OP(op_type)           \
  USE_OP_WITHOUT_KERNEL(op_type); \
  USE_OP_KERNEL(op_type, CPU);    \
  USE_OP_KERNEL(op_type, GPU)
#endif
306 307 308

}  // namespace framework
}  // namespace paddle