tensor_py.h 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
Q
qijun 已提交
16
#include <string>
Q
qijun 已提交
17 18 19 20
#include "paddle/framework/tensor.h"
#include "paddle/memory/memcpy.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
21 22 23 24 25

namespace py = pybind11;

namespace paddle {

26
namespace pybind {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace details {

template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
  py::buffer_info operator()(framework::Tensor &tensor) {
    PADDLE_THROW("This type of tensor cannot be expose to Python");
    return py::buffer_info();
  }
};

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
  using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  py::buffer_info operator()(framework::Tensor &tensor) {
Y
Yu Yang 已提交
45
    if (std::type_index(typeid(CUR_TYPE)) == tensor.type()) {
46 47 48 49 50 51 52 53 54 55 56 57
      auto dim_vec = framework::vectorize(tensor.dims());
      std::vector<size_t> dims_outside;
      std::vector<size_t> strides;
      dims_outside.resize(dim_vec.size());
      strides.resize(dim_vec.size());

      size_t prod = 1;
      for (size_t i = dim_vec.size(); i != 0; --i) {
        dims_outside[i - 1] = (size_t)dim_vec[i - 1];
        strides[i - 1] = sizeof(CUR_TYPE) * prod;
        prod *= dims_outside[i - 1];
      }
Q
qijun 已提交
58
      framework::Tensor dst_tensor;
Y
Yu Yang 已提交
59
      if (paddle::platform::is_gpu_place(tensor.place())) {
60 61 62 63 64 65 66 67 68 69 70 71
#ifdef PADDLE_WITH_CUDA
        auto *src_ptr = static_cast<const void *>(tensor.data<CUR_TYPE>());
        auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
            tensor.dims(), platform::CPUPlace()));
        // TODO(qijun): Here we use default CUDA stream to set GPU Tensor to
        // a Python numpy array. It's better to manage CDUA stream unifiedly.
        paddle::platform::GpuMemcpySync(dst_ptr, src_ptr,
                                        sizeof(CUR_TYPE) * tensor.numel(),
                                        cudaMemcpyDeviceToHost);
#else
        PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
#endif
Y
Yu Yang 已提交
72
      } else if (paddle::platform::is_cpu_place(tensor.place())) {
Q
qijun 已提交
73 74
        dst_tensor = tensor;
      }
75
      return py::buffer_info(
Y
Yu Yang 已提交
76
          dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.place()),
77 78
          sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(),
          (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
79 80 81 82 83 84 85 86
    } else {
      constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
      return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
    }
  }
};
}  // namespace details
inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
87
  auto buffer_info =
88 89
      details::CastToPyBufferImpl<true, 0, float, int, double, int64_t>()(
          tensor);
90 91 92
  return buffer_info;
}

93 94 95 96 97 98 99 100 101 102 103 104
template <typename T>
T TensorGetElement(framework::Tensor &self, size_t offset) {
  PADDLE_ENFORCE(platform::is_cpu_place(self.place()));
  return self.data<T>()[offset];
}

template <typename T>
void TensorSetElement(framework::Tensor &self, size_t offset, T elem) {
  PADDLE_ENFORCE(platform::is_cpu_place(self.place()));
  self.data<T>()[offset] = elem;
}

105
template <typename T>
Q
qijun 已提交
106
void PyCPUTensorSetFromArray(
107
    framework::Tensor &self,
Q
qijun 已提交
108 109
    py::array_t<T, py::array::c_style | py::array::forcecast> array,
    paddle::platform::CPUPlace &place) {
Q
qijun 已提交
110
  std::vector<int64_t> dims;
111 112 113 114 115
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
  }

F
fengjiayi 已提交
116
  self.Resize(framework::make_ddim(dims));
Q
qijun 已提交
117
  auto *dst = self.mutable_data<T>(place);
118 119 120
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

121
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
122 123 124 125 126
template <typename T>
void PyCUDATensorSetFromArray(
    framework::Tensor &self,
    py::array_t<T, py::array::c_style | py::array::forcecast> array,
    paddle::platform::GPUPlace &place) {
Q
qijun 已提交
127
  std::vector<int64_t> dims;
Q
qijun 已提交
128 129 130
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
Q
qijun 已提交
131
  }
Q
qijun 已提交
132 133 134

  self.Resize(framework::make_ddim(dims));
  auto *dst = self.mutable_data<T>(place);
135 136
  // TODO(qijun): Here we use default CUDA stream to set a Python numpy
  // array to a GPU Tensor. It's better to manage CDUA stream unifiedly.
137 138
  paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
                                  cudaMemcpyHostToDevice);
139
}
Q
qijun 已提交
140
#endif
141 142 143

}  // namespace pybind
}  // namespace paddle