test_conj_op.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import sys
sys.path.append("..")
from op_test import OpTest
from paddle.fluid import Program, program_guard
import paddle.fluid.dygraph as dg
import paddle.static as static
from numpy.random import random as rand

paddle.enable_static()


class TestConjOp(OpTest):
    def setUp(self):
        self.op_type = "conj"
35
        self.python_api = paddle.tensor.conj
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        self.init_dtype_type()
        self.init_input_output()
        self.init_grad_input_output()

    def init_dtype_type(self):
        self.dtype = np.complex64

    def init_input_output(self):
        x = (np.random.random((12, 14)) + 1j * np.random.random(
            (12, 14))).astype(self.dtype)
        out = np.conj(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def init_grad_input_output(self):
        self.grad_out = (np.ones((12, 14)) + 1j * np.ones(
            (12, 14))).astype(self.dtype)
        self.grad_in = np.conj(self.grad_out)

    def test_check_output(self):
57
        self.check_output(check_eager=True)
58 59 60 61 62 63

    def test_check_grad_normal(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_in],
64 65
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128


class TestComplexConjOp(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_conj_api(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
                    self.assertTrue(np.array_equal(result, target))

    def test_conj_operator(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = var_x.conj().numpy()
                    target = np.conj(input)
                    self.assertTrue(np.array_equal(result, target))

    def test_conj_static_mode(self):
        def init_input_output(dtype):
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]).astype(dtype)
            return {'x': input}, np.conj(input)

        for dtype in self._dtypes:
            input_dict, np_res = init_input_output(dtype)
            for place in self._places:
                with static.program_guard(static.Program()):
                    x_dtype = np.complex64 if dtype == "float32" else np.complex128
                    x = static.data(
                        name="x", shape=[2, 20, 2, 3], dtype=x_dtype)
                    out = paddle.conj(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
                    self.assertTrue(np.array_equal(np_res, out_value[0]))

    def test_conj_api_real_number(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
                    self.assertTrue(np.array_equal(result, target))


if __name__ == "__main__":
    unittest.main()