batch_norm_compute.h 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <random>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

template <typename T>
class BatchNormCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::BatchNormParam;
  void Run() override {
    auto &param = *param_.get_mutable<operators::BatchNormParam>();
    bool global_stats = param.is_test || param.use_global_stats;

    const auto *x = param.x;
    const auto &x_dims = x->dims();
    CHECK(x_dims.size() >= 2 && x_dims.size() <= 5);
    const int N = x_dims[0];
    const int C = param.data_layout == DATALAYOUT(kNCHW)
                      ? x_dims[1]
                      : x_dims[x_dims.size() - 1];
    const int sample_size = x->dims().production() / N / C;

    // alloc memory
    param.y->template mutable_data<T>();
    param.mean_out->template mutable_data<T>();
    param.variance_out->template mutable_data<T>();
    param.saved_mean->template mutable_data<T>();
    param.saved_variance->template mutable_data<T>();

    if (!global_stats) {
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(param.saved_mean->mutable_data<T>(),
                                          C);
      EigenVectorArrayMap<T> saved_variance_e(
          param.saved_variance->mutable_data<T>(), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

      EigenVectorArrayMap<T> running_mean_arr(param.mean_out->mutable_data<T>(),
                                              C);
      EigenVectorArrayMap<T> running_var_arr(
          param.variance_out->mutable_data<T>(), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
        framework::TensorCopy(x->raw_tensor(), platform::CPUPlace(),
                              &param.y->raw_tensor());
        return;
      }

      switch (param.data_layout) {
        case DATALAYOUT(kNCHW): {
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
          LOG(FATAL) << "Unknown storage order: "
                     << DataLayoutToStr(param.data_layout);
          break;
      }
      running_mean_arr = running_mean_arr * param.momentum +
                         saved_mean_e * (1. - param.momentum);
      running_var_arr = running_var_arr * param.momentum +
                        saved_variance_e * (1. - param.momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (global_stats) {
      ConstEigenVectorArrayMap<T> var_arr(param.variance->data<T>(), C);
      inv_std = (var_arr + param.epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          param.saved_variance->mutable_data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + param.epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }

    ConstEigenVectorArrayMap<T> mean_arr(
        global_stats ? param.mean->data<T>() : param.saved_mean->data<T>(), C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)

    ConstEigenVectorArrayMap<T> scale_arr(param.scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(param.bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

    switch (param.data_layout) {
      case DATALAYOUT(kNCHW): {
        EigenArrayMap<T> y_arr(param.y->mutable_data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
      default:
        LOG(FATAL) << "Unknown storage order: "
                   << DataLayoutToStr(param.data_layout);
        break;
    }
  }
  virtual ~BatchNormCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle