context.h 8.0 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
S
superjomn 已提交
16

17
#include "paddle/fluid/lite/utils/any.h"
S
superjomn 已提交
18
#ifdef LITE_WITH_CUDA
Y
Yan Chunwei 已提交
19
#include "paddle/fluid/lite/cuda/blas.h"
S
superjomn 已提交
20 21
#include "paddle/fluid/lite/cuda/cuda_utils.h"
#endif
Y
Yan Chunwei 已提交
22 23 24 25
#ifdef LITE_WITH_X86
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device_context.h"
#endif
26
#include <map>
S
superjomn 已提交
27
#include <memory>
S
superjomn 已提交
28
#include <set>
29 30
#include <string>
#include <utility>
S
superjomn 已提交
31
#include <vector>
T
tensor-tang 已提交
32 33
#include "paddle/fluid/lite/core/cpu_info.h"
#include "paddle/fluid/lite/core/lite_tensor.h"
S
superjomn 已提交
34
#include "paddle/fluid/lite/core/target_wrapper.h"
35
#include "paddle/fluid/lite/utils/all.h"
S
superjomn 已提交
36 37 38 39

namespace paddle {
namespace lite {

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopyShared(const HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};
58 59

#ifdef LITE_WITH_ARM
T
tensor-tang 已提交
60

61 62
template <>
class Context<TargetType::kARM> {
T
tensor-tang 已提交
63
 public:
64
  Context() {}
65
  explicit Context(const ARMContext& ctx);
T
tensor-tang 已提交
66

67
  ARMContext& operator=(const ARMContext& ctx) {}
T
tensor-tang 已提交
68

69
  // NOTE: InitOnce should only be used by ContextScheduler
H
hong19860320 已提交
70
  void InitOnce() { DeviceInfo::Init(); }
71 72 73

  void CopyShared(const ARMContext* ctx) {}

74 75 76 77 78 79 80
  void SetRunMode(PowerMode mode, int threads) {
    return DeviceInfo::Global().SetRunMode(mode, threads);
  }
  void SetCache(int l1size, int l2size, int l3size) {
    return DeviceInfo::Global().SetCache(l1size, l2size, l3size);
  }
  void SetArch(ARMArch arch) { return DeviceInfo::Global().SetArch(arch); }
T
tensor-tang 已提交
81

82 83 84
  PowerMode mode() const { return DeviceInfo::Global().mode(); }
  int threads() const { return DeviceInfo::Global().threads(); }
  ARMArch arch() const { return DeviceInfo::Global().arch(); }
H
hong19860320 已提交
85 86 87
  int l1_cache_size() const { return DeviceInfo::Global().l1_cache_size(); }
  int l2_cache_size() const { return DeviceInfo::Global().l2_cache_size(); }
  int l3_cache_size() const { return DeviceInfo::Global().l3_cache_size(); }
T
tensor-tang 已提交
88 89 90

  template <typename T>
  T* workspace_data() {
91
    return DeviceInfo::Global().workspace_data<T>();
T
tensor-tang 已提交
92 93
  }

94 95 96
  bool ExtendWorkspace(DDimLite dims) {
    return DeviceInfo::Global().ExtendWorkspace(dims);
  }
T
tensor-tang 已提交
97

98
  std::string name() const { return "ARMContext"; }
T
tensor-tang 已提交
99
};
100 101
#endif

S
superjomn 已提交
102 103
#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
template <>
class Context<TargetType::kCUDA> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
    cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
  }

  void CopyShared(const CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

  const cudaStream_t exec_stream() { return exec_stream_; }
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

  const cudaStream_t io_stream() { return io_stream_; }
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

 private:
S
superjomn 已提交
144
  // overall information
145 146
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;
S
superjomn 已提交
147 148

  // not thread-safe, should allocate for each thread.
149
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;
S
superjomn 已提交
150 151

  // kernel information
152 153
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
S
superjomn 已提交
154 155 156 157
};
#endif

#ifdef LITE_WITH_X86
158 159 160 161 162 163 164 165 166 167 168 169
template <>
class Context<TargetType::kX86> {
 public:
  using device_ctx_t = ::paddle::platform::CPUDeviceContext;
  using execution_ctx_t = ::paddle::framework::ExecutionContext;

  Context() {
    x86_device_context_.reset(new ::paddle::platform::CPUDeviceContext);
    x86_execution_context_.reset(
        new ::paddle::framework::ExecutionContext(*x86_device_context_));
  }

170 171 172 173 174
  Context(Context&& ctx) {
    x86_device_context_ = std::move(ctx.x86_device_context_);
    x86_execution_context_ = std::move(ctx.x86_execution_context_);
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopyShared(const X86Context* ctx) {}

  const device_ctx_t* x86_device_context() { return x86_device_context_.get(); }
  void SetX86DeviceContext(std::unique_ptr<device_ctx_t>&& ctx) {
    x86_device_context_ = std::move(ctx);
  }

  const execution_ctx_t* x86_execution_context() {
    return x86_execution_context_.get();
  }
  void SetX86ExecutionContext(std::unique_ptr<execution_ctx_t>&& ctx) {
    x86_execution_context_ = std::move(ctx);
190
  }
191 192 193 194 195 196

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
S
superjomn 已提交
197
  // kernel information
Y
Yan Chunwei 已提交
198 199

  // legacy info.
200 201
  std::unique_ptr<device_ctx_t> x86_device_context_;
  std::unique_ptr<execution_ctx_t> x86_execution_context_;
S
superjomn 已提交
202 203 204 205 206 207 208
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
209 210 211 212
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
213
    }
214
    return *ctx_.get_mutable<ContextT>();
215 216 217
  }

 private:
218
  Any ctx_;
S
superjomn 已提交
219 220
};

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopyShared(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopyShared(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
      case TARGET(kCUDA):
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopyShared(
            &ctx->As<CUDAContext>());
        break;
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopyShared(
            &ctx->As<ARMContext>());
        break;
#endif
      default:
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

S
superjomn 已提交
283 284
}  // namespace lite
}  // namespace paddle