test_fleet_1.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.incubate.fleet.base.role_maker as role_maker


class TestFleet2(unittest.TestCase):
    """Test cases for fleet ops."""

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import \
            fleet_embedding, _prepare_params, _fleet_embedding, \
            _fleet_embedding_v2, FLEET_GLOBAL_DICT
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        try:
            import netifaces
        except:
            print("warning: no netifaces, skip test_pslib_1")
            return
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
        role_maker.generate_role()
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        fleet.init(role_maker)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        global FLEET_GLOBAL_DICT
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            click = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            with fleet_embedding(click_name=click.name):
                emb = fluid.layers.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))
            emb = fluid.layers.data_norm(
                input=emb,
                name="a",
                epsilon=1e-4,
                param_attr={
                    "batch_size": 1e4,
                    "batch_sum_default": 0.0,
                    "batch_square": 1e4
                })
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(
                adam,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourSparseValueAccessor"
                    }
                })
            adam.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return
        FLEET_GLOBAL_DICT["cur_accessor"] = "DownpourCtrAccessor"
        try:
            _prepare_params(input=show, size=[1, 1])
        except:
            print("catch expected exception of param_attr=None")
        try:
            _prepare_params(
                input=show, size=[1, 1], param_attr=fluid.ParamAttr())
        except:
            print("catch expected exception of name=None")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=1, param_attr=tmp)
        except:
            print("catch expected exception of size not list")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 12], param_attr=tmp)
        except:
            print("catch expected exception of size not equal")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(
                input=show, size=[-1, 1], param_attr=tmp, is_sparse=False)
        except:
            print("catch expected exception of is_sparse=False")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 1], param_attr=tmp, \
                            is_sparse=True, is_distributed=False)
        except:
            print("catch expected exception of is_distributed=False")
        try:
            _prepare_params(input=show, size=[-1, 1], \
                            param_attr=fluid.ParamAttr(name="embedding"), \
                            is_sparse=True, is_distributed=True, dtype="abc")
        except:
            print("catch expected exception of unknown dtype")
        try:
            FLEET_GLOBAL_DICT["emb_to_accessor"]["embedding"] = "unknown"
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 1], param_attr=tmp)
        except:
            print("catch expected exception of unknown accessor")
        FLEET_GLOBAL_DICT["cur_accessor"] = "DownpourCtrAccessor"
        try:
            _fleet_embedding(input=show, size=[-1, 1], is_sparse=True, \
                             is_distributed=True, dtype="float32", \
                             param_attr=fluid.ParamAttr(name="embedding"))
        except:
            print("catch expected exception of unknown accessor")
        try:
            _fleet_embedding_v2(input=show, size=[-1, 1], is_sparse=True, \
                                is_distributed=True, dtype="float32", \
                                param_attr=fluid.ParamAttr(name="embedding"))
        except:
            print("catch expected exception of unknown accessor")

        adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
        adam1 = fleet.distributed_optimizer(
            adam1,
            strategy={
                "embedding": {
                    "sparse_accessor_class": "DownpourSparseValueAccessor"
                }
            })
        try:
            pre = FLEET_GLOBAL_DICT["emb_to_table"]
            FLEET_GLOBAL_DICT["emb_to_table"] = {}
            adam1.minimize([cost], [scope])
        except:
            FLEET_GLOBAL_DICT["emb_to_table"] = pre
            print("catch expected exception of empty emb_to_table")
        try:
            pre = FLEET_GLOBAL_DICT["emb_to_table"]
            FLEET_GLOBAL_DICT["emb_to_table"] = {}
            FLEET_GLOBAL_DICT["emb_to_table"]["emb1"] = 0
            adam1.minimize([cost], [scope])
        except:
            FLEET_GLOBAL_DICT["emb_to_table"] = pre
            print("catch expected exception of error emb_to_table")
        try:
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2)
            adam2.supported_embedding_types = []
            adam2.minimize([cost], [scope])
        except:
            print("catch expected exception of embedding_types")
        try:
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(
                adam3,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourSparseValueAccessor",
                        "sparse_embedx_dim": 999
                    }
                })
            adam3.minimize([cost], [scope])
        except:
            print("catch expected exception of embedx_dim error")

        try:
            adam4 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam4 = fleet.distributed_optimizer(
                adam4,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourCtrAccessor",
                        "sparse_embedx_dim": 999
                    }
                })
            adam4.minimize([cost], [scope])
        except:
            print("catch expected exception of embedx_dim error")
        train_program1 = fluid.Program()
        startup_program1 = fluid.Program()
        FLEET_GLOBAL_DICT["emb_to_accessor"] = {}
        with fluid.program_guard(train_program1, startup_program1):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            with fleet_embedding(click_name=click.name):
                emb = fluid.layers.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))
            with fleet_embedding(click_name=click.name):
                emb1 = fluid.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))


if __name__ == "__main__":
    unittest.main()