sequence_expand_op.cc 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36
    auto out_dims = x_dims;
Y
yangyaming 已提交
37 38
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

      PADDLE_ENFORCE_LE(x_lod.size(), 1,
                        "Number of lod level of Input(X) should not be "
                        "greater than 1.");
Y
yangyaming 已提交
54 55 56 57 58 59 60 61 62 63 64
      PADDLE_ENFORCE_GT(y_lod.size(), 0,
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
65

Y
yangyaming 已提交
66 67 68 69 70 71 72 73
      if (x_lod.size() > 0) {
        PADDLE_ENFORCE(
            x_lod.size() == 0 || x_lod[0].size() == y_lod[ref_level].size(),
            "Level number of Input(X)'s lod should be 0. Otherwise "
            "size of Input(X)'s first level lod should be equal to "
            "size of Input(Y)'s lod of referred level.");
      }

Y
yangyaming 已提交
74
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
75
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
76 77
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
78 79 80 81
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
82
          }
Y
yangyaming 已提交
83 84
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
85 86
        }
      }
Y
yangyaming 已提交
87 88
      out_dims[0] = out_first_dim;
      ctx->SetOutputDim("Out", out_dims);
Y
yangyaming 已提交
89
    } else {
Y
yangyaming 已提交
90 91 92
      out_dims[0] = -1;
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
Y
yangyaming 已提交
93
    }
W
wanghaoshuang 已提交
94 95 96
  }
};

W
wanghaoshuang 已提交
97
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
98
 public:
99
  SequenceExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaoshuang 已提交
100
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
101
    AddInput("X",
Y
yangyaming 已提交
102 103
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
104
    AddInput("Y",
Y
yangyaming 已提交
105 106
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
107
    AddOutput("Out",
Y
yangyaming 已提交
108 109
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
110
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
111
    AddComment(R"DOC(
W
wanghaoshuang 已提交
112
Sequence Expand Operator.
W
wanghaoshuang 已提交
113

Y
yangyaming 已提交
114 115 116 117 118 119 120
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

121
Following are cases to better explain how this works:
Y
yangyaming 已提交
122

W
wanghaoshuang 已提交
123
Case 1:
W
wanghaoshuang 已提交
124

Y
yangyaming 已提交
125 126 127
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
128 129 130 131
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
132 133 134 135
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
136
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
137 138 139

Case 2:

Y
yangyaming 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,             5,             8]]
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
155
Given a common Tensor input(X)
Y
yangyaming 已提交
156
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
157 158 159
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
160 161 162
ref_level: -1
then we a common Tensor
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
163
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
164

Y
yangyaming 已提交
165
Case 4:
W
wanghaoshuang 已提交
166

W
wanghaoshuang 已提交
167
Given a common Tensor input(X)
W
wanghaoshuang 已提交
168 169 170 171
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
172 173 174
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
175 176
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
177 178 179 180
)DOC");
  }
};

W
wanghaoshuang 已提交
181
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
182 183 184 185 186
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
187 188
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
189
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
190 191
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
192 193
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
194

W
wanghaoshuang 已提交
195 196 197 198 199 200 201 202 203 204
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
205 206
REGISTER_OP(sequence_expand, ops::SequenceExpandOp, ops::SequenceExpandOpMaker,
            sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
207
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
208
    sequence_expand,
Y
yangyaming 已提交
209 210 211 212
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
213
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
214
    sequence_expand_grad,
Y
yangyaming 已提交
215 216 217 218
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);