kube_gen_job.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import copy
import argparse
import random
import os
from kube_templates import pserver, trainer, envs


def parse_args():
    parser = argparse.ArgumentParser(description='Generate dist job yamls.')

    parser.add_argument(
        '--jobname', default="paddlejob", help='unique job name')
    parser.add_argument(
        '--cpu', default=1, type=int, help='CPU cores per trainer node')
    parser.add_argument(
        '--pscpu', default=1, type=int, help='CPU cores per pserver node')
    parser.add_argument(
        '--gpu', default=0, type=int, help='num of GPUs per node')
    parser.add_argument(
        '--image',
        default="bootstrapper:5000/fluid_benchmark:gpu",
        help='num of GPUs per node')
    parser.add_argument(
        '--pservers', default=1, type=int, help='num of pservers')
    parser.add_argument(
        '--trainers', default=1, type=int, help='num of trainers')
    parser.add_argument('--memory', default=1, type=int, help='trainer memory')
    parser.add_argument(
        '--psmemory', default=1, type=int, help='pserver memory')
    parser.add_argument(
        '--port', default=30236, type=int, help='num of trainers')
    parser.add_argument(
        '--entry', default="python train.py", help='command to run')
    parser.add_argument(
        '--fluid', default=1, type=int, help='whether is fluid job')
    parser.add_argument(
        '--rdma', action='store_ture', help='whether mount rdma libs')
    parser.add_argument(
        '--disttype',
        default="pserver",
        type=str,
        choices=['pserver', 'nccl2', 'local'],
        help='pserver or nccl2 or local')

    args = parser.parse_args()
    return args


def gen_job():
    ps = pserver
    tn = trainer
    args = parse_args()

    ps_container = ps["spec"]["template"]["spec"]["containers"][0]
    tn_container = tn["spec"]["template"]["spec"]["containers"][0]

    if args.fluid == 1:
        ps_container["command"] = \
            ["paddle_k8s", "start_fluid"]
        tn_container["command"] = \
            ["paddle_k8s", "start_fluid"]
    ps["metadata"]["name"] = args.jobname + "-pserver"
    ps["spec"]["template"]["metadata"]["labels"][
        "paddle-job-pserver"] = args.jobname
    tn["metadata"]["name"] = args.jobname + "-trainer"
    tn["spec"]["template"]["metadata"]["labels"]["paddle-job"] = args.jobname

    ps_container["image"] = args.image
    tn_container["image"] = args.image

    ps_container["resources"]["requests"]["cpu"] = str(args.pscpu)
    ps_container["resources"]["requests"]["memory"] = str(args.psmemory) + "Gi"
    ps_container["resources"]["limits"]["cpu"] = str(args.pscpu)
    ps_container["resources"]["limits"]["memory"] = str(args.psmemory) + "Gi"

    tn_container["resources"]["requests"]["cpu"] = str(args.cpu)
    tn_container["resources"]["requests"]["memory"] = str(args.memory) + "Gi"
    tn_container["resources"]["limits"]["cpu"] = str(args.cpu)
    tn_container["resources"]["limits"]["memory"] = str(args.memory) + "Gi"
    if args.gpu > 0:
        tn_container["resources"]["requests"][
            "alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)
        tn_container["resources"]["limits"][
            "alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)

    ps["spec"]["replicas"] = int(args.pservers)
    tn["spec"]["parallelism"] = int(args.trainers)
    tn["spec"]["completions"] = int(args.trainers)
    ps_container["ports"][0]["name"] = "jobport-" + str(args.port)
    ps_container["ports"][0]["containerPort"] = args.port
    spreadport = random.randint(40000, 60000)
    tn_container["ports"][0]["name"] = "spr-" + str(spreadport)
    tn_container["ports"][0]["containerPort"] = spreadport

    envs.append({"name": "PADDLE_JOB_NAME", "value": args.jobname})
    envs.append({"name": "TRAINERS", "value": str(args.trainers)})
    envs.append({"name": "PSERVERS", "value": str(args.pservers)})
    envs.append({"name": "ENTRY", "value": args.entry})
    envs.append({"name": "PADDLE_INIT_PORT", "value": str(args.port)})
115
    envs.append({"name": "PADDLE_PSERVER_PORT", "value": str(args.port)})
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    # NOTE: these directories below are cluster specific, please modify
    # this settings before you run on your own cluster.
    envs.append({
        "name": "LD_LIBRARY_PATH",
        "value":
        "/usr/local/lib:/usr/local/nvidia/lib64:/usr/local/rdma/lib64:/usr/lib64/mlnx_ofed/valgrind"
    })

    volumes = [{
        "name": "nvidia-driver",
        "hostPath": {
            "path": "/usr/local/nvidia/lib64"
        }
    }]
    volumeMounts = [{
        "mountPath": "/usr/local/nvidia/lib64",
        "name": "nvidia-driver"
    }]

    if args.rdma:
        volumes.extend([{
            "name": "ibetc",
            "hostPath": {
                "path": "/etc/libibverbs.d"
            }
        }, {
            "name": "iblibs",
            "hostPath": {
                "path": "/usr/local/rdma"
            }
        }, {
            "name": "valgrind",
            "hostPath": {
                "path": "/usr/lib64/mlnx_ofed/valgrind"
            }
        }])
        volumeMounts.extend([{
            "mountPath": "/etc/libibverbs.d",
            "name": "ibetc"
        }, {
            "mountPath": "/usr/local/rdma",
            "name": "iblibs"
        }, {
            "mountPath": "/usr/lib64/mlnx_ofed/valgrind",
            "name": "valgrind"
        }])
        # append shm for NCCL2
        volumes.append({"name": "dshm", "emptyDir": {"medium": "Memory"}})
        volumeMounts.append({"mountPath": "/dev/shm", "name": "dshm"})

    tn["spec"]["template"]["spec"]["volumes"] = volumes
    tn_container["volumeMounts"] = volumeMounts

    ps_container["env"] = envs
    ps_container["env"].append({"name": "TRAINING_ROLE", "value": "PSERVER"})
    tn_container["env"] = envs
    if args.disttype == "pserver":
        tn_container["env"].append({
            "name": "TRAINING_ROLE",
            "value": "TRAINER"
        })
    elif args.disttype == "nccl2" or args.disttype == "local":
        # NCCL2 have no training role, set to plain WORKER
        tn_container["env"].append({"name": "TRAINING_ROLE", "value": "WORKER"})

    os.mkdir(args.jobname)
    if args.disttype == "pserver":
        with open("%s/pserver.yaml" % args.jobname, "w") as fn:
            yaml.dump(ps, fn)

    with open("%s/trainer.yaml" % args.jobname, "w") as fn:
        yaml.dump(tn, fn)


if __name__ == "__main__":
    gen_job()