gan_api.md 8.2 KB
Newer Older
Z
zchen0211 已提交
1 2 3 4 5 6 7 8
# Design for GAN

GAN (General Adversarial Net) is an important model for unsupervised learning and widely used in many areas. 

It contains several important machine learning concepts, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.

In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN as an example due to its good performance on image generation.

Z
new gan  
zchen0211 已提交
9 10 11 12 13 14 15 16 17 18 19
| important building blocks | People in Charge  |
|---------------------------|-------------------|
| convolution 2d (done)     | Chengduo          |
| deconv 2d (missing)       | Zhuoyuan          |
| batch norm (missing)      | Zhuoyuan, Jiayi   |
| Dependency Engine (done)  | Jiayi             |
| Executor (done)           | Tony              |
| Multi optimizer           | ?                 |
| Optimizer with any para   | ?                 |


Z
zchen0211 已提交
20 21 22 23 24
<p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/>
Borrow this photo from the original DC-GAN paper.
</p>

Z
zchen0211 已提交
25 26 27
## The Conditional-GAN might be a class. 
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

Z
zchen0211 已提交
28
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
Z
zchen0211 已提交
29

Z
zchen0211 已提交
30
- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.
Z
zchen0211 已提交
31

Z
zchen0211 已提交
32
- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Z
zchen0211 已提交
33 34
Returns a generated image.

Z
zchen0211 已提交
35
- discriminator(image):
Z
zchen0211 已提交
36 37 38
Given an image, decide if it is from a real source or a fake one. 
Returns a 0/1 binary label.

Z
zchen0211 已提交
39
- build_model(self):
Z
zchen0211 已提交
40
build the whole GAN model, define training loss for both generator and discrimator.
Z
zchen0211 已提交
41

Z
zchen0211 已提交
42 43 44 45 46 47 48 49 50
## Discussion on Engine Functions required to build GAN
- Trace the ternsor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
Z
gan api  
zchen0211 已提交
51
```python
Z
zchen0211 已提交
52 53 54 55 56 57 58 59 60
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
zchen0211 已提交
61
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
Z
gan api  
zchen0211 已提交
62
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
63 64 65 66
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
67
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
68 69

    # define parameters of generators
Z
gan api  
zchen0211 已提交
70 71
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
72 73 74 75
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
76 77
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
78

Z
zchen0211 已提交
79 80 81 82
### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
Z
gan api  
zchen0211 已提交
83
```python
Z
zchen0211 已提交
84
def generator(self, z, y = None):
Z
zchen0211 已提交
85 86 87 88
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
    
Z
zchen0211 已提交
89 90 91 92 93 94 95
    if not self.y_dim:
      z = pd.concat(1, [z, y])
      
    G_h0 = pd.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.batch_norm(G_h0)
    G_h0_relu = pd.relu(G_h0_bn)
    
Z
zchen0211 已提交
96
    G_h1 = pd.deconv(G_h0_relu, self.G_w1, self.G_b1)
Z
zchen0211 已提交
97 98 99 100 101 102
    G_h1_bn = pd.batch_norm(G_h1)
    G_h1_relu = pd.relu(G_h1_bn)
    
    G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.tanh(G_im)
    return G_im
Z
gan api  
zchen0211 已提交
103 104
```

Z
zchen0211 已提交
105 106 107
### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
Z
gan api  
zchen0211 已提交
108
```python
Z
zchen0211 已提交
109
def discriminator(self, image):
Z
zchen0211 已提交
110 111
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label
Z
zchen0211 已提交
112 113 114 115 116 117 118 119 120 121 122

    D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
    D_h0_bn = pd.batchnorm(h0)
    D_h0_relu = pd.lrelu(h0_bn)
    
    D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
    D_h1_bn = pd.batchnorm(D_h1)
    D_h1_relu = pd.lrelu(D_h1_bn)
    
    D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
    return D_h2
Z
gan api  
zchen0211 已提交
123
```
Z
zchen0211 已提交
124 125

### Class member function: Build the model
Z
zchen0211 已提交
126 127 128
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
- Define two training losses for discriminator and generator, respectively. 
Z
gan api  
zchen0211 已提交
129
```python
Z
zchen0211 已提交
130 131 132 133 134 135 136 137 138
def build_model(self):

    # input data
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
Z
zchen0211 已提交
139 140
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
Z
zchen0211 已提交
141 142 143 144 145 146 147 148 149 150 151 152
      self.G = self.generator(self.z, self.y)
      self.D_t = self.discriminator(self.images)
      # generated fake images
      self.sampled = self.sampler(self.z, self.y)
      self.D_f = self.discriminator(self.images)
    else: # original version of GAN
      self.G = self.generator(self.z)
      self.D_t = self.discriminator(self.images)
      # generate fake images
      self.sampled = self.sampler(self.z)
      self.D_f = self.discriminator(self.images)
    
Z
zchen0211 已提交
153
    # step 2: define the two losses
Z
zchen0211 已提交
154 155 156 157 158
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
159
```
Z
zchen0211 已提交
160

Z
zchen0211 已提交
161
## Main function for the demo:
Z
zchen0211 已提交
162 163 164 165
Generally, the user of GAN just need to the following things:
- Define an object as DCGAN class;
- Build the DCGAN model;
- Specify two optimizers for two different losses with respect to different parameters.
Z
gan api  
zchen0211 已提交
166
```python
Z
zchen0211 已提交
167 168 169 170 171
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

Z
zchen0211 已提交
172 173 174 175 176 177 178 179 180
if __name__ == "__main__":
    # dcgan
    dcgan = DCGAN()
    dcgan.build_model()

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
Z
zchen0211 已提交
181 182
    d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(dcgan.d_loss, dcgan.theta_D)
    g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(dcgan.g_loss, dcgan.theta_G)
Z
zchen0211 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
Z
zchen0211 已提交
197
          sess.run(d_optim, 
Z
zchen0211 已提交
198 199 200 201
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
zchen0211 已提交
202
          sess.run(g_optim,
Z
zchen0211 已提交
203
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
204
```