trainer.py 8.9 KB
Newer Older
Q
qijun 已提交
1
"""
Q
qijun 已提交
2
Module Trainer
Q
qijun 已提交
3
"""
Y
Yu Yang 已提交
4
import collections
Q
qiaolongfei 已提交
5
from topology import Topology
Q
qiaolongfei 已提交
6
from . import event as v2_event
Y
Yu Yang 已提交
7 8 9
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters

10
__all__ = ['SGD']
Q
qijun 已提交
11

Y
Yu Yang 已提交
12 13

def default_event_handler(event):
Y
Yu Yang 已提交
14 15 16 17 18 19 20
    """
    Default event handler. It will print some log and save mode.

    TODO(yuyang18): Complete it!
    :param event:
    :return:
    """
Y
Yu Yang 已提交
21 22 23
    pass


Y
Yu Yang 已提交
24 25 26
class SGD(object):
    """
    Simple SGD Trainer.
Q
qijun 已提交
27 28
    SGD Trainer combines data reader, network topolopy and update_equation together
    to train/test a neural network.
Y
Yu Yang 已提交
29 30 31 32 33

    :param cost: Target cost that neural network should be optimized.
    :type cost: paddle.v2.config_base.Layer
    :param parameters: The parameters dictionary.
    :type parameters: paddle.v2.parameters.Parameters
W
wanghaoshuang 已提交
34 35
    :param update_equation: The optimizer object.
    :type update_equation: paddle.v2.optimizer.Optimizer
D
dangqingqing 已提交
36 37 38
    :param extra_layers: Some layers in the neural network graph are not
                         in the path of cost layer.
    :type extra_layers: paddle.v2.config_base.Layer
W
wanghaoshuang 已提交
39 40 41 42 43 44
    :param is_local: Whether trainning locally
    :type is_local: bool
    :param pserver_spec: pserver location, eg: localhost:3000
    :type pserver_spec: string
    :param use_etcd: Whether using etcd pserver.
    :param use_etcd: bool
Y
Yu Yang 已提交
45
    """
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50 51
    def __init__(self,
                 cost,
                 parameters,
                 update_equation,
                 extra_layers=None,
52
                 is_local=True,
53 54
                 pserver_spec=None,
                 use_etcd=True):
55

Y
Yu Yang 已提交
56 57 58
        if not isinstance(parameters, v2_parameters.Parameters):
            raise TypeError('parameters should be parameters')

Y
Yu Yang 已提交
59
        if not isinstance(update_equation, v2_optimizer.Optimizer):
Y
Yu Yang 已提交
60 61
            raise TypeError("update equation parameter must be "
                            "paddle.v2.optimizer.Optimizer")
Y
Yu Yang 已提交
62
        import py_paddle.swig_paddle as api
63
        topology = Topology(cost, extra_layers=extra_layers)
Y
Yu Yang 已提交
64
        self.__optimizer__ = update_equation
Y
Yu Yang 已提交
65 66
        self.__topology__ = topology
        self.__parameters__ = parameters
67
        self.__topology_in_proto__ = topology.proto()
Q
qiaolongfei 已提交
68
        self.__is_local__ = is_local
69
        self.__pserver_spec__ = pserver_spec
70
        self.__use_etcd__ = use_etcd
71

Q
qiaolongfei 已提交
72 73 74 75 76 77
        self.__use_sparse_updater__ = self.__topology__.use_sparse_updater()
        # # In local mode, disable sparse_remote_update.
        if is_local:
            for param in self.__topology_in_proto__.parameters:
                if param.sparse_remote_update:
                    param.sparse_remote_update = False
78

Q
qiaolongfei 已提交
79 80
        self.__gm_create_mode__ = api.CREATE_MODE_NORMAL if not \
            self.__use_sparse_updater__ else api.CREATE_MODE_SGD_SPARSE_CPU_TRAINING
Y
Yu Yang 已提交
81
        self.__data_types__ = topology.data_type()
Y
Yu Yang 已提交
82
        gm = api.GradientMachine.createFromConfigProto(
Q
qiaolongfei 已提交
83
            self.__topology_in_proto__, self.__gm_create_mode__,
Y
Yu Yang 已提交
84 85 86 87
            self.__optimizer__.enable_types())
        assert isinstance(gm, api.GradientMachine)
        self.__gradient_machine__ = gm
        self.__gradient_machine__.randParameters()
Q
qiaolongfei 已提交
88
        self.__parameters__.append_gradient_machine(gm)
Q
qiaolongfei 已提交
89 90
        self.__parameter_updater__ = None

Q
qiaolongfei 已提交
91
    def __use_remote_sparse_updater__(self):
Q
qiaolongfei 已提交
92
        return self.__use_sparse_updater__ and not self.__is_local__
Y
Yu Yang 已提交
93

Q
qiaolongfei 已提交
94 95 96 97 98 99 100 101 102 103 104 105
    def __prepare_parameter__(self, in_args):
        """
        prepare parameter before forward backward.
        1. When use remote sparse updater, parameters should be got
        from ps according to input arguments.
        :param in_args: input arguments of this batch.
        :return:
        """
        if self.__use_remote_sparse_updater__():
            self.__gradient_machine__.prefetch(in_args)
            self.__parameter_updater__.getParametersRemote()

Q
qiaolongfei 已提交
106
    def save_parameter_to_tar(self, f):
Q
qiaolongfei 已提交
107 108 109
        self.__parameter_updater__.catchUpWith()
        self.__parameter_updater__.apply()
        self.__parameter_updater__.getParametersRemote(True, True)
Q
qiaolongfei 已提交
110
        self.__parameters__.to_tar(f)
Q
qiaolongfei 已提交
111
        self.__parameter_updater__.restore()
Y
Yu Yang 已提交
112

Y
Yu Yang 已提交
113
    def train(self, reader, num_passes=1, event_handler=None, feeding=None):
Y
Yu Yang 已提交
114 115 116
        """
        Training method. Will train num_passes of input data.

Q
qijun 已提交
117 118 119
        :param reader: A reader that reads and yeilds data items. Usually we use a
                       batched reader to do mini-batch training.
        :type reader: collections.Iterable
Y
Yu Yang 已提交
120 121 122 123
        :param num_passes: The total train passes.
        :param event_handler: Event handler. A method will be invoked when event
                              occurred.
        :type event_handler: (BaseEvent) => None
Y
Yu Yang 已提交
124 125
        :param feeding: Feeding is a map of neural network input name and array
                        index that reader returns.
Y
Yu Yang 已提交
126
        :type feeding: dict|list
Y
Yu Yang 已提交
127 128
        :return:
        """
Y
Yu Yang 已提交
129 130
        import py_paddle.swig_paddle as api
        from data_feeder import DataFeeder
Y
Yu Yang 已提交
131 132 133 134
        if event_handler is None:
            event_handler = default_event_handler
        __check_train_args__(**locals())

Q
qiaolongfei 已提交
135
        self.__parameter_updater__ = self.__optimizer__.create_updater(
136
            self.__is_local__, num_passes, self.__use_sparse_updater__,
137
            self.__pserver_spec__, self.__use_etcd__)
Q
qiaolongfei 已提交
138
        self.__parameter_updater__.init(self.__gradient_machine__)
Y
Yu Yang 已提交
139

Y
Yu Yang 已提交
140 141
        self.__gradient_machine__.start()
        batch_evaluator = self.__gradient_machine__.makeEvaluator()
Y
Yu Yang 已提交
142
        assert isinstance(batch_evaluator, api.Evaluator)
Y
Yu Yang 已提交
143
        pass_evaluator = self.__gradient_machine__.makeEvaluator()
Y
Yu Yang 已提交
144
        assert isinstance(pass_evaluator, api.Evaluator)
Y
Yu Yang 已提交
145
        out_args = api.Arguments.createArguments(0)
Y
Yu Yang 已提交
146
        feeder = DataFeeder(self.__data_types__, feeding)
Y
Yu Yang 已提交
147
        for pass_id in xrange(num_passes):
Y
Yu Yang 已提交
148 149
            event_handler(v2_event.BeginPass(pass_id))
            pass_evaluator.start()
Q
qiaolongfei 已提交
150
            self.__parameter_updater__.startPass()
Y
Yu Yang 已提交
151
            for batch_id, data_batch in enumerate(reader()):
Y
Yu Yang 已提交
152 153 154 155
                batch_evaluator.start()
                event_handler(
                    v2_event.BeginIteration(
                        pass_id=pass_id, batch_id=batch_id))
Q
qiaolongfei 已提交
156 157
                pass_type = self.__parameter_updater__.startBatch(
                    len(data_batch))
Q
qiaolongfei 已提交
158
                in_args = feeder(data_batch)
Q
qiaolongfei 已提交
159
                self.__prepare_parameter__(in_args)
Q
qiaolongfei 已提交
160 161
                self.__gradient_machine__.forwardBackward(in_args, out_args,
                                                          pass_type)
Y
Yu Yang 已提交
162 163
                self.__gradient_machine__.eval(pass_evaluator)
                self.__gradient_machine__.eval(batch_evaluator)
L
liaogang 已提交
164 165
                for each_param in self.__gradient_machine__.getNonStaticParameters(
                ):
Q
qiaolongfei 已提交
166
                    self.__parameter_updater__.update(each_param)
Y
Yu Yang 已提交
167
                cost_sum = out_args.sum()
Y
Yu Yang 已提交
168
                cost = cost_sum / len(data_batch)
Y
Yu Yang 已提交
169
                event_handler(
Y
Yu Yang 已提交
170
                    v2_event.EndIteration(
Y
Yu Yang 已提交
171 172 173 174
                        pass_id=pass_id,
                        batch_id=batch_id,
                        cost=cost,
                        evaluator=batch_evaluator))
175 176
                self.__parameter_updater__.finishBatch(cost)
                batch_evaluator.finish()
Y
Yu Yang 已提交
177

Q
qiaolongfei 已提交
178
            self.__parameter_updater__.finishPass()
Y
Yu Yang 已提交
179 180
            pass_evaluator.finish()
            event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
Y
Yu Yang 已提交
181 182
        self.__gradient_machine__.finish()

Y
Yu Yang 已提交
183
    def test(self, reader, feeding=None):
Q
qijun 已提交
184 185 186 187
        """
        Testing method. Will test input data.

        :param reader: A reader that reads and yeilds data items.
X
xuwei06 已提交
188
        :type reader: collections.Iterable
Q
qijun 已提交
189 190 191 192 193
        :param feeding: Feeding is a map of neural network input name and array
                        index that reader returns.
        :type feeding: dict
        :return:
        """
Y
Yu Yang 已提交
194 195
        import py_paddle.swig_paddle as api
        from data_feeder import DataFeeder
Y
Yu Yang 已提交
196
        feeder = DataFeeder(self.__data_types__, feeding)
Y
Yu Yang 已提交
197 198 199
        evaluator = self.__gradient_machine__.makeEvaluator()
        out_args = api.Arguments.createArguments(0)
        evaluator.start()
Y
Yu Yang 已提交
200 201
        total_cost = 0
        num_samples = 0.0
Y
Yu Yang 已提交
202
        for data_batch in reader():
Y
Yu Yang 已提交
203
            num_samples += len(data_batch)
Q
qiaolongfei 已提交
204
            in_args = feeder(data_batch)
Q
qiaolongfei 已提交
205
            self.__prepare_parameter__(in_args)
Q
qiaolongfei 已提交
206
            self.__gradient_machine__.forward(in_args, out_args, api.PASS_TEST)
Y
Yu Yang 已提交
207
            total_cost += out_args.sum()
Y
Yu Yang 已提交
208
            self.__gradient_machine__.eval(evaluator)
Y
Yu Yang 已提交
209

Y
Yu Yang 已提交
210
        evaluator.finish()
Y
Yu Yang 已提交
211 212
        return v2_event.TestResult(
            evaluator=evaluator, cost=total_cost / num_samples)
Y
Yu Yang 已提交
213 214 215


def __check_train_args__(reader, event_handler, **kwargs):
Y
Yu Yang 已提交
216 217 218
    """
    Check train function's argument types
    """
Y
Yu Yang 已提交
219
    if not callable(reader) or not isinstance(reader(), collections.Iterator):
Y
Yu Yang 已提交
220 221
        raise TypeError('train_data_reader should be a function, '
                        'which can return a iterator')
Y
Yu Yang 已提交
222
    if not callable(event_handler):
Y
Yu Yang 已提交
223
        raise TypeError('event handler should be a function')